15CH210 Chemical Process Technology

Unit 4 - Natural Products

S. Balasubramanian Chemical Engineering

Unit 4 Natural Products

- Edible and essential oils Industries
- Manufacture of soaps, detergents and glycerine
- Introduction and Manufacture of Kraft Pulp, Paper
- Soda recovery process
- Manufacture of starch and its derivatives
- Manufacture of sugar

Unit 4 Natural Products - Edible and essential oils Industries

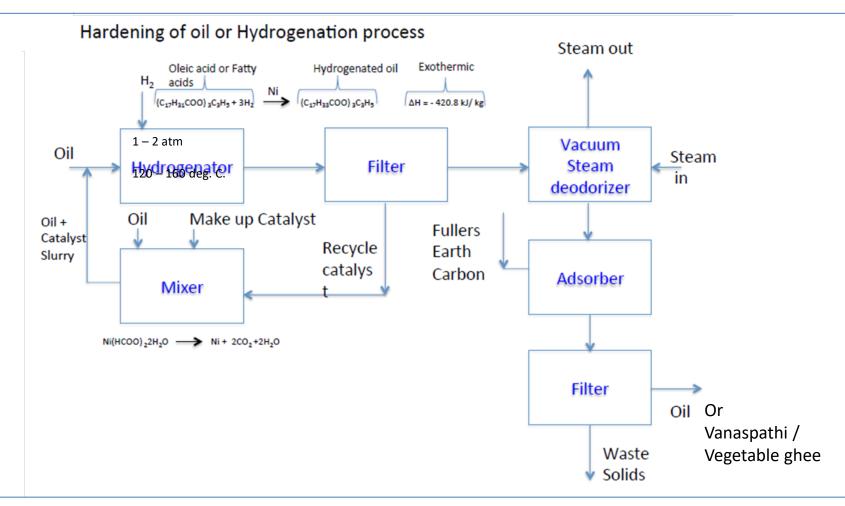
- Manufacture of edible oil
- Hydrogenation of Edible oil

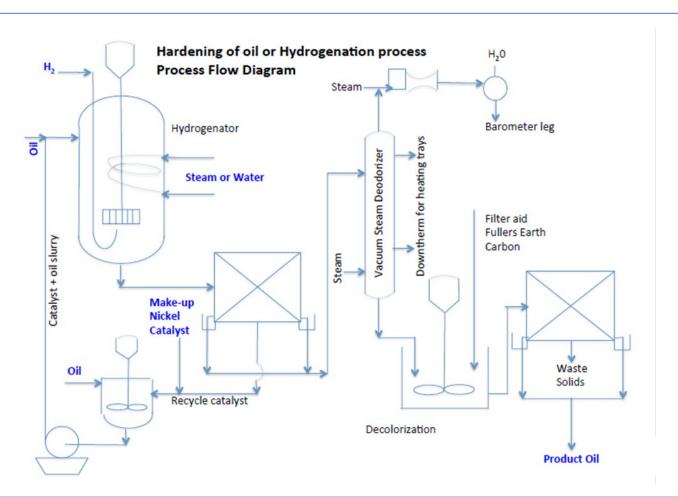
Unit 4 Natural Products - Edible oils

R	No. of Double Bonds	Melting point	Reactivity
Stearic	0	69	Nil
Oleic	1	14	Fair
Linoleic	2	- 5	Rapid
Linolenic	3	V - 11	Extremely rapid

Hydrogenation

Hydrogenation is a unit process which is used in the fat and oil industry to remove the double bonds, raise melting point of the fat, and improve its resistance to rancid oxidation.


Hardening of oils


Glycerides of unsaturated acids are liquid at room temperature and so are unsuitable for edible fats. By converting the unsaturated acids into saturated acids, oils are changed into fats by introduction of hydrogen.

This introduction of hydrogen is known as *hardening of oils*. The oil is heated and hydrogen is passed under pressure, in the presence of finely divided nickel catalyst.

The major end product in India is Vanaspathi, a solidified household oil for cooking. Other products are vegetable ghee, hardened industrial oil, and so on.

DOWTHERM™ A is a eutectic mixture of two very stable compounds, biphenyl - $C_{12}H_{10}$. diphenyl oxide - $C1_2H_{10}O$.

S. No	Process	Equipment	Unit operations	Unit process	Objective	Operating conditions
1.	Hydrogenation (Batch/ Continuous)	(a) Hydrogenator		Hydrogenation	Remove the double bond to improve the resistance to rancidity	1 – 2 atm 120 -160 deg. C
		(b) Filter	Solid-liquid separation		Separation and recycle of oil and oil slurry with catalyst	
		(c) Vacuum steam deodorizer	Liquid-gas separation		Remove volatile odorous materials by using steam	
		(d) Adsorber	Solid-liquid Separation by pressing		Removal of color components using adsorbents	
		(e) Filter	Solid-liquid separation		Separation of oil and solid waste	
		(f) Catalyst mixer	Solid-Liquid mixing		Mixing of catalyst With oil	

Uses

Edible oils Essential oils

Food - Hydrogenated oil (Vanaspathi) Cosmetics

Soaps and Detergents Perfumes

Cosmetics Soaps

Paints and Varnishes Medicines

If an oil is hydrolyzed and or saponified with alkali soaps are obtained.

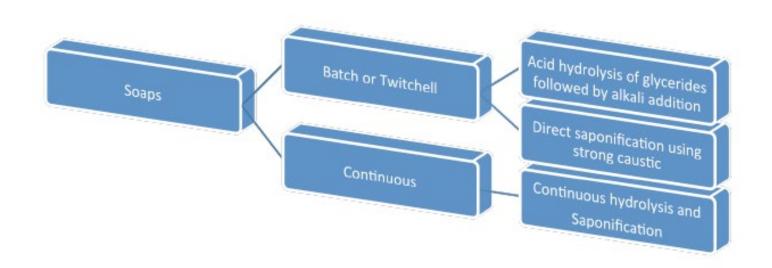
Any metallic salts of fatty acid is soap, but the term soap is applied to water soluble salts.

Soaps comprises of the sodium or potassium salts of various fatty acids but chiefly of oleic, stearic, palmitic, lauric and mystiric acids.

The saturated fat gives hard soaps, whereas unsaturated fat gives soft soaps on saponification

Soaps comprises of the sodium or potassium salts of various fatty acids but chiefly of oleic, stearic, palmitic, lauric and mystiric acids. It also comprises of salts of sodium and zinc oxide catalyst.

Detergents differ from soap in their action in hard water.


Detergents may react with hard water ions, but the resulting products are either soluble or remain colloidally dispersed in water.

Scientifically, the term detergent covers both soap and synthetic detergents or "Syndents" but it is widely used to indicate synthetic cleaning compound.

S. No	Soaps	Detergents	
01.	Soaps from insoluble compounds with the calcium and magnesium ions present in hard water	Detergents may react with hard water ions, but the resulting products are either soluble or remain colloidally dispersed in water.	
		Synthetic cleaning compound	
02.	To make soap Tallow /or rice bran oil + Hydrolysis → (Splitting fats) Tallow fatty acid or fa	Alkylbenzene sulfonate + oleum → Disulfonate and Sulfuric acid	
03.	Tallow /or rice bran oil + NaOH → (Saponification) Sodium salt	Tallow fatty alcohol + oleum → Fatty alcohol sulfate	
04.	Salt of fatty acid + builders, etc > Soap	Sulfonate + Sulfate + NaOH Sodium salts	
		Sodium salt + Builders detergents →	

Glycerin is a clear, nearly colorless liquid having a sweet taste but no odor.

The term glycerin is chosen for the technical product containing the pure trihydroxy alcohol "glycerol".

	Batch (Twitchell) Process	Continuous process
Temperature, deg. C	150 – 175	230 - 250
Pressure, mPa (g)	5.2 – 10	4.1 – 4.9 40 – 45 atm
Catalyst	Alkyl aryl sulfonic acids, Oxides of calcium, zinc and magnesium i.e. CaO, ZnO, MgO.	Same catalyst or optional
Acid used	Sulfuric acid	
Time, h	12 – 48	2 – 3
Operation equipment	Batch	Continuous
Hydrolysis	85 – 98 %	97 – 99%
Glycerol obtained	5 – 15%	10 – 25%
Advantages	Low temperature, adaptable to small scale	Small floor space, uniform product quality, high yield of acids, high glycerin concentration, automatic control
Disadvantages	Catalyst handling; ling reaction time, need more than one stage for good yield	High temperature and pressure, High cost and greater operating skill

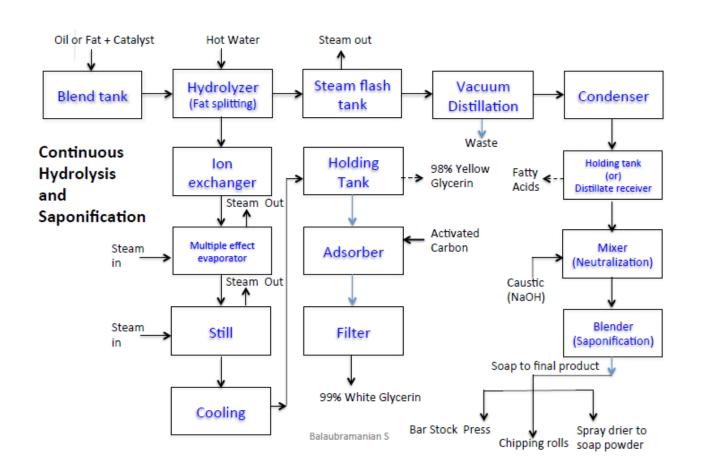
Continuous hydrolysis and Saponification

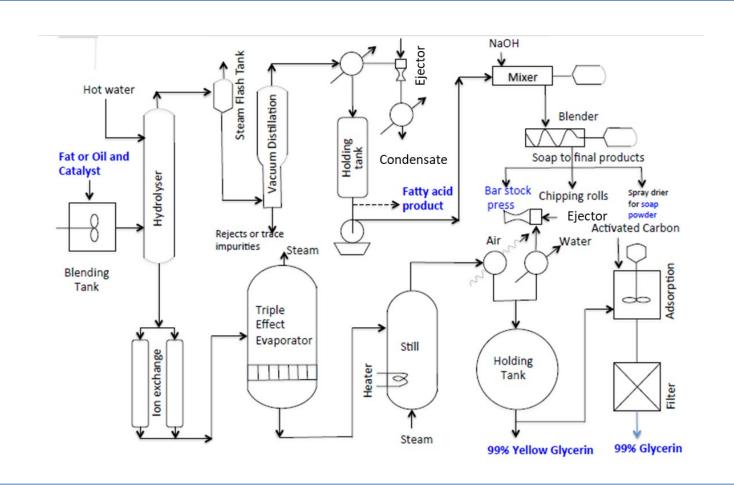
Hydrolysis (Fat − Splitting)

$$(R . COO)_3 . C_3H_5 + 3H_2O \longrightarrow 3R . COO . H + C_3H_5(OH)_3$$

$$(Triglyceride) + (Water) \longrightarrow Fatty acid + Glycerin$$

$$(C_{17}H_{35}COO)_3 C_3H_5 + 3H_2O \longrightarrow 3C_{17}H_{35}COOH + H_2O$$

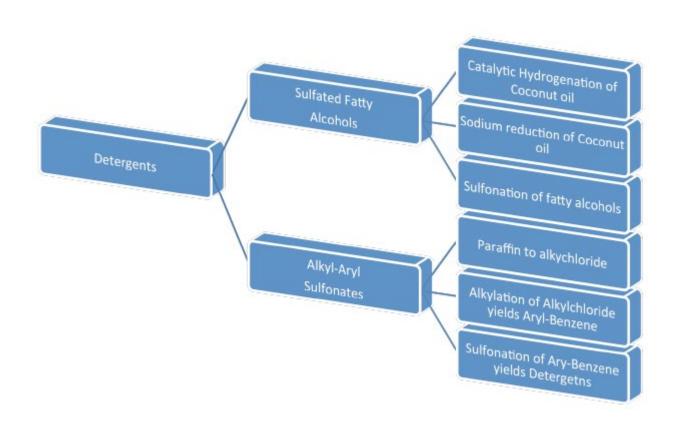

$$Glyceryl stearate + Water \longrightarrow Fatty acid (Stearic Acid) + Glycerin$$


Saponification (Caustic Addition)

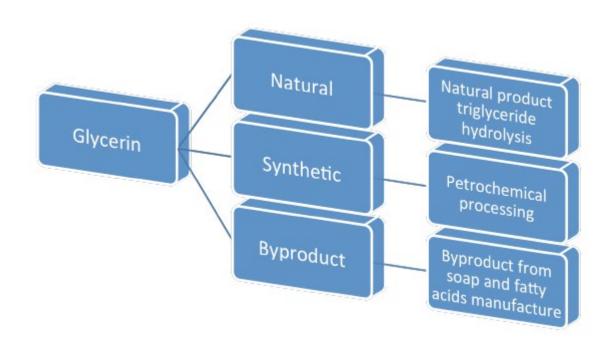
$$R . COOH + M . OH \longrightarrow R . COO . M + H_2O$$

$$C_{17}H_{35}COOH + NaOH \longrightarrow C_{17}H_{35}COONa + H_2O$$

$$(Stearic acid) + (Caustic) \longrightarrow Sodium stearate + water$$



S. No	Process	Equipment	Unit operations	Unit process	Objective	Operating conditions
1.	Continuous Hydrolysis and Saponification (Continuous Process)	(a) Blend tank	Physical blending		Blending of fat or oil and catalyst	
		(b) Hydrolyzer		Hydrolysis	Splitting of fats	230 - 250 deg. C 40 – 45 atm
		(c) Ion exchanger	Ion exchange		Separation of dissolved salts and glycerides collected from the hydrolyzer as the bottom product	
		(d) Evaporator	Evaporation		Separation of water and glycerides (or) Concentration of glycerides	


S. No	Process	Equipment	Unit operations	Unit process	Objective	Operating conditions
		(e) Distillation still	Distillation		Glycerides obtained from the evaporator is purified to produce 99% Yellow Glycerin	
		(f) Cooler (or) Heat exchanger	Cooling or Heat transfer		Cool the glycerides obtained from the still	
		(g) Holding tank	Storage		Cooled glycerides Stored	
		(h) Adsorber	Adsorption		Removal of color constituents using activated carbon as the adsorbent	

S. No	Process	Equipment	Unit operations	Unit process	Objective	Operating conditions
		(i) Filter	Filtration		Final separation of glycerides	
		(j) Steam flash tank	Steam separation		Separation of steam from fatty acid	
		(k) Vacuum distillation column	Distillation		Separation of fatty acids and trace impurities	
		(I) Condenser	Condensation		Vapors of fatty acids converted to liquid	
		(m) Holding tank (or) Distillate receiver	Storage		The distillate from the condenser is stored	

S. No	Process	Equipment	Unit operations	Unit process	Objective	Operating conditions
		(n) Mixer	Mixing		Neutralization of fatty acids	
		(o) Blender	Blending	Saponification	Saponification of neutralized fatty acids	
		(p) Spray drier	Drying		Drying of soaps into powder after saponification.	

Unit 4 Natural Products – Glycerine

Unit 4 Natural Products – Glycerine

A partial list of soaps and detergents; glycerin is given to show the diversity of application

Soaps and detergents

Textile manufacture

Sanitation

Food processing

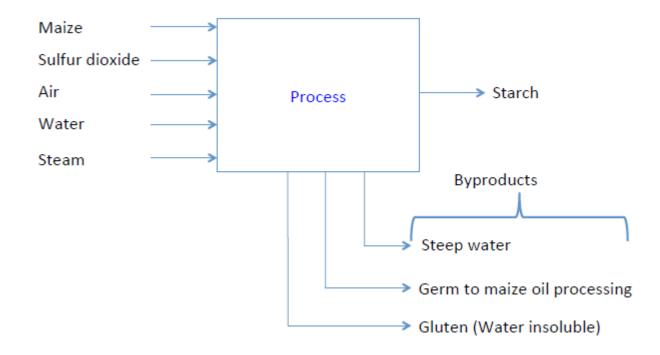
Shaving soaps

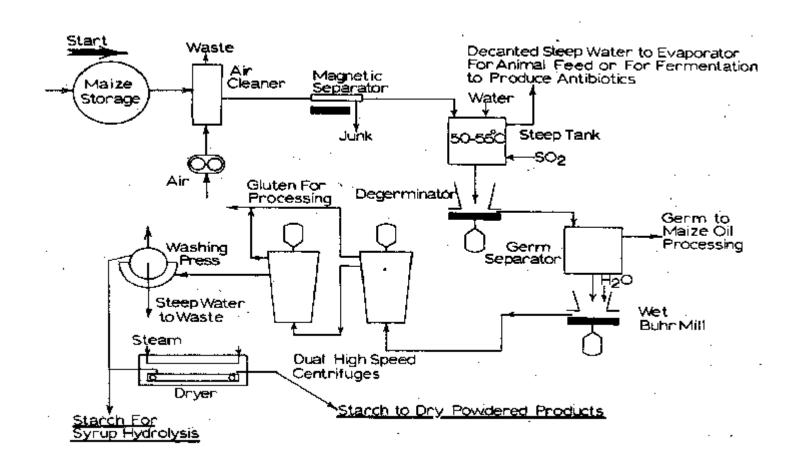
Synthetic rubber and plastics emulsion polymerization

Paints - water emulsion formulations

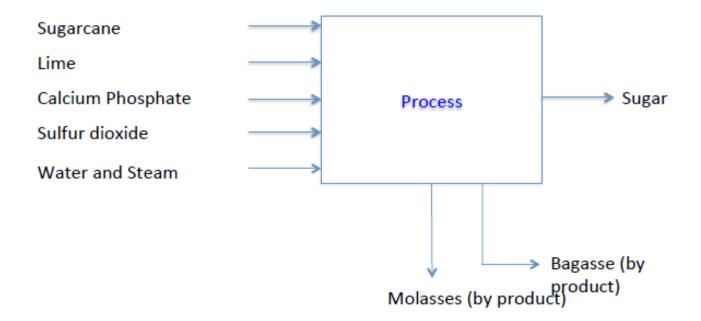
Paper - Application of sizing

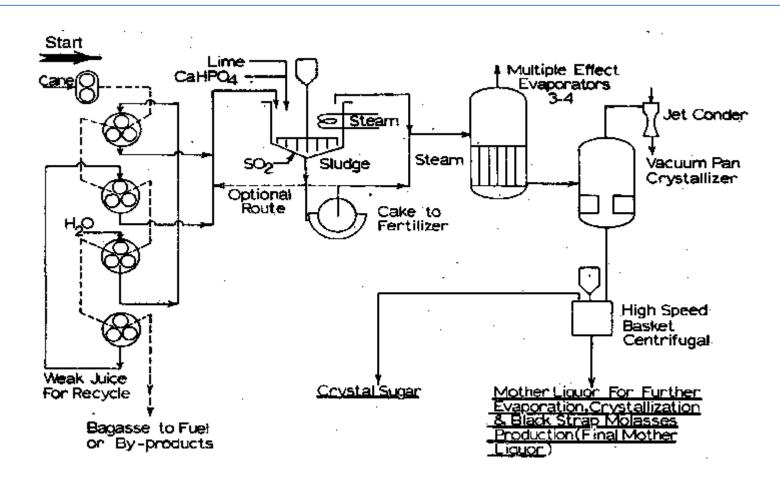
Glycerin


Alkyl resin and Plastics


Tobacco humidification

Cellulose Plasticizer


Explosives


Food and Pharmaceuticals

Process	Equipment	Unit Operation	Unit Process	Objective	Operating Conditions
Continuous	Maize Storage	Storage		To store the maize	*****
Continuous	Air cleaner	Cleaning		Remove the dust and fines	
Continuous	Magnetic Separator	Particle Separation		Separate metal particles	
Continuous	Steep tank	Decantation		Add water to facilitate the germination and Removal of steep water by decantation. SO ₂ is added as bacteriostatic.	50 – 55 deg. C
Continuous	Degerminator	Grinding		To rupture the cells to remove germs	
Continuous	Germ separator	Particle Separation		To separate the germs and send it to maize Oil processing	
Continuous	Wet Bhur Mill	Size reduction and separation		Crush the fiber and removes the undesired hulls	
Continuous	Dual High Speed Centrifuge	Solid-Liquid Separation		To separate the gluten a water insoluble protein and starch	

S. No	Process	Equipment	Unit operations	Unit process	Objective	Operating conditions
1.	Continuous	(a) Primary Crusher	Crushing		To facilitate initial crushing and Squeezing of juice from sugarcane	
	Continuous	(b) Secondary Crushers	Solid-liquid separation (Crushing)		Extracting the maxing amount of available juice from sugarcane. Expel the crushed cane (Bagasse).	
	Continuous	(c) Thickener/ Clarifier/ Mixer-Settler	Solid-liquid separation (Flocculation)		To separate the colloidal impurities in juice by adding lime and calcium phosphate. pH is also adjusted by adding sulfur dioxide.	

S. No	Process	Equipment	Unit operations	Unit process	Objective	Operating conditions
	Continuous	(d) Rotary Drier	Solid-Liquid Separation (Filtration)		To separate the cake and liquid juice obtained from the underflow of thickener/ clarifier.	
	Continuous	(e) Evaporator	Liquid-Liquid Separation (Evaporation)		To separate the solvent water from the juice. To concentrate the solute	
	Continuous	(f) Vacuum Pan Crystallizer	Solid – Liquid Separation (Crystallization)		To produce sugar crystals and mother liquor or black strap molasses.	
	Continuous	(g) Basket Centrifuge	Solid – liquid Separation		Separation of Sugar crystals from mother liquor.	7

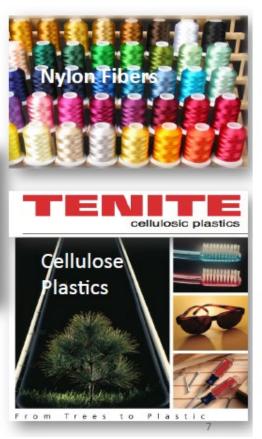
Unit 4 Natural Products – Manufacture of Pulp and Paper

Cellulose

Cellulose is a polysaccharide used in chemical industries in the form known as *chemical cellulose* for preparation of fibers, paper, and plastics.

Pulp

Pulp is commercial and or chemical cellulose derived from bamboo, bagasse, and wood by mechanical or chemical methods.


Paper

Paper is defined as matted or felted sheets of fibers, usually cellulosic and generally formed on a fine wire screen from a fiber-water suspension.

Balasubramanian S

Ballarpur Industries Limited(BILT)

ITC Bhadrachalam Mill is located at Sarapaka, Andhra Pradesh

Tamil Nadu Newsprint and Papers Ltd. Kagithapuram in Karur.

Pudumjee Pulp & Paper Mills Ltd. Pune (Maharashtra, India)

The West Coast Paper Mills Ltd. Karnataka

The Andhra Pradesh Paper Mills Ltd. Rajahmundry, AP

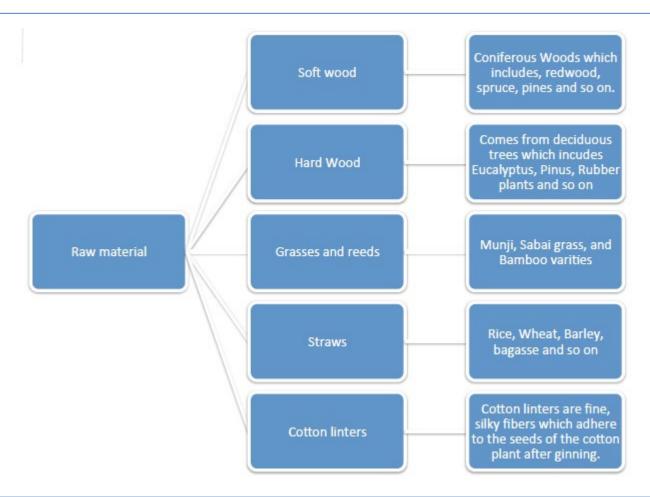
JK Paper Jaykaypur, Orissa.

Star Paper Saharanpur, Uttar Pradesh

Titagarh Paper Mills Company Ltd. Titagarh and Kakinara

Sirpur Paper Mills. Kaghaznagar, Andhra Pradesh

Sri Krishna Paper Mills and Industries Ltd. Delhi


Vikarabad Pulp and Paper Mills Pvt. Ltd. Andhra Pradesh

Pulping

Paper production requires a disintegration of the bulky fibrous material to individual or small agglomerate fibers. This is called *Pulping*.

The requirement of a good raw material for pulp and paper production,

- The ideal fiber for high grade paper should be long i.e. fiber must be long
- 2. High in cellulose content
- 3. Low in lignin content

Soft wood

Coniferous Woods which includes, redwood, spruce, pines and so on.

Hard Wood

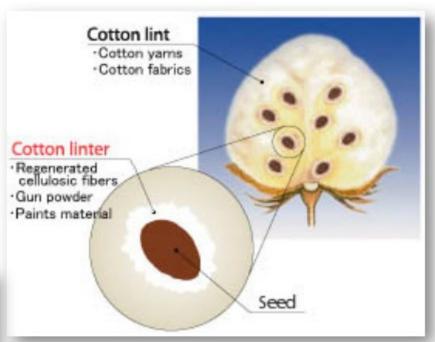
Comes from deciduous trees which incudes Eucalyptus, Rubber plants and so on

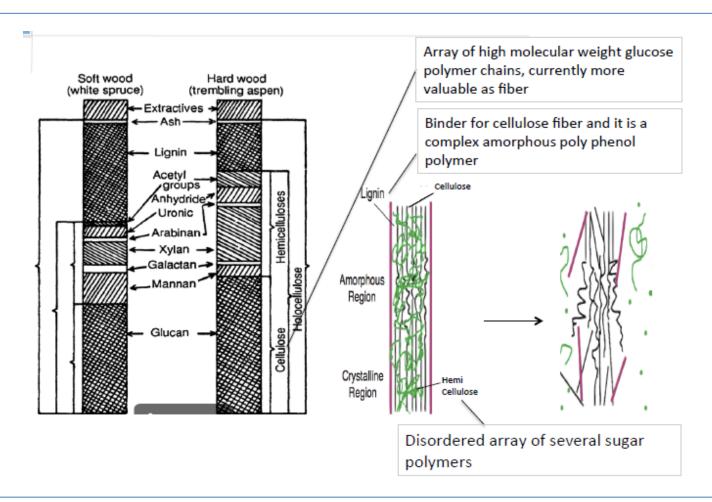
Grasses and reeds

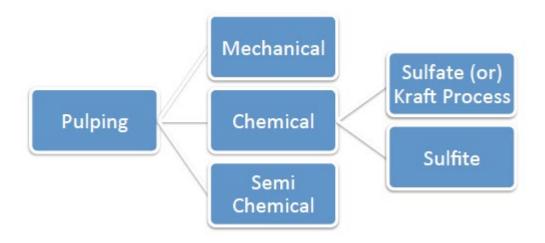
Munji, Sabai grass, and Bamboo varities

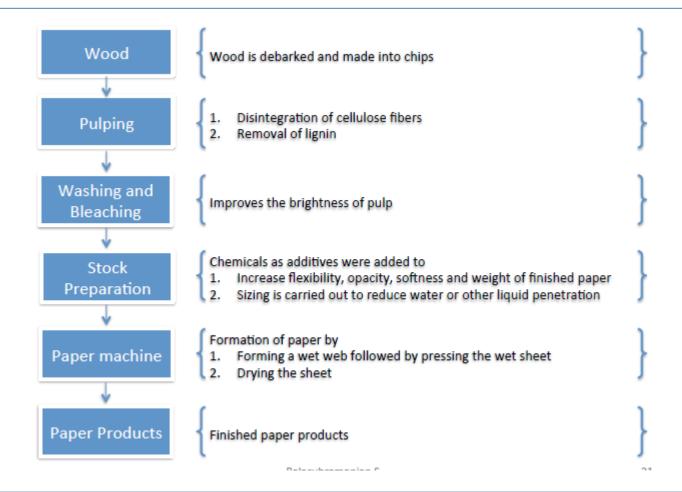
Straws

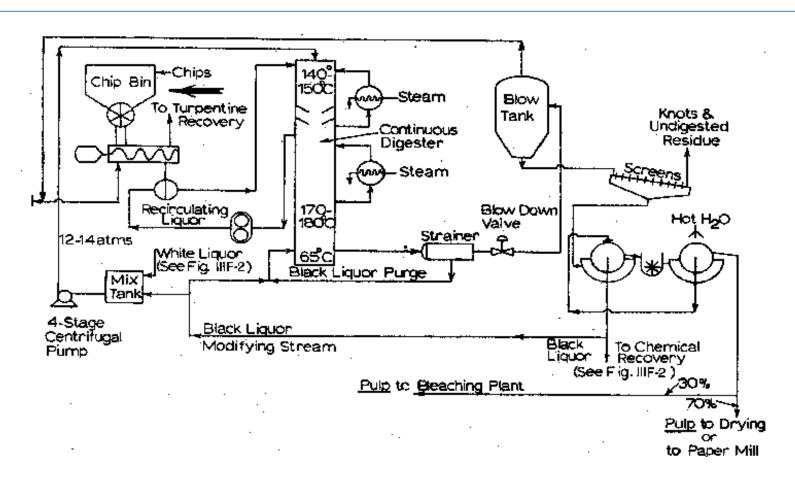
Rice, Wheat, bagasse and so on

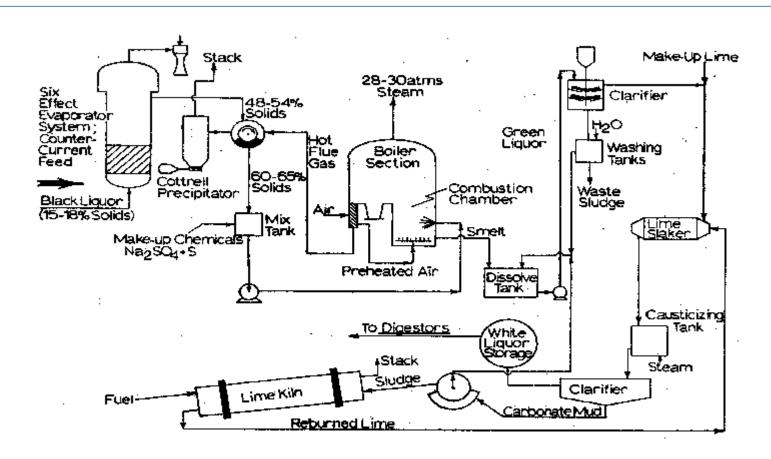




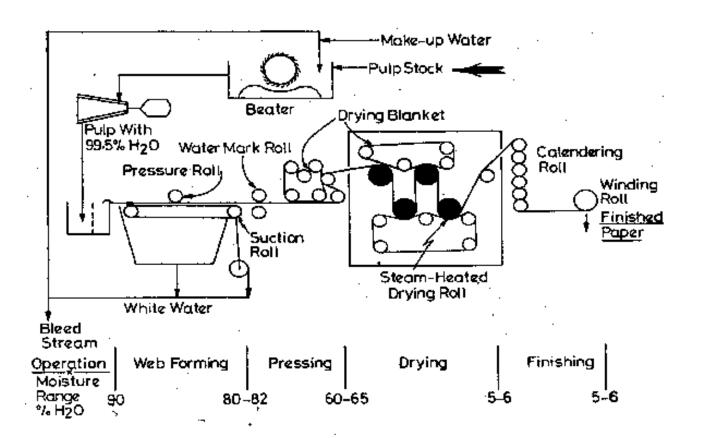

Cotton linters


Cotton linters are fine, silky fibers which adhere to the seeds of the cotton plant after ginning.





Process	Equipment	Unit Operation	Unit Process	Objective	Operating Conditions
Continuous	Chip bin	Storage		Receive and store the chips from the chipper	
Continuous	Digester		Hydrolysis	Solubilizing the lignin components by adding white liquor	65 – 180 deg. C 12 atm presssure
Continuous	Strainer	Solid-Liquid Separation		Removal of black liquor and solubilized lignin	
Continuous	Blow down tank	Storage and Transportation		Cool and transport the digested pulp to further processes. Separate the turpentine as the top product and reuse it to preheat the chips entering into the chip bin.	
Continuous	Screen	Size separation		To remove the wood knots and other undigested residue	
Continuous	Washing	Solid-Liquid Separation		Recover the black liquor by washing the digested wood cellulose. Prepare the cellulose for bleaching	



Process	Equipment	Unit Operation	Unit Process	Objective	Operating Conditions
Continuous	Multiple Effect Evaporator	Solid-Liquid separation		To concentrate the black liquor	5 – 6 stages
Continuous	Smelting furnace		Oxidation	Burn the organic carbon to produce an inorganic Molten slag. CO ₂ is liberated. To facilitate the process alkali is supplied via Na ₂ SO ₄ 2NaR (Lignin) + Air → Na ₂ CO ₃ + CO ₂ Na ₂ SO ₄ +2C from R → Na ₂ S + 2CO ₂	
Continuous	Dissolve tank	Physical Separation		Bring contact between slag and water to yield Green liquor	
Continuous	Clarifier	Solid-Liquid Separation		To separate insoluble impurities such as unburned carbon and also to obtained a clear liquor by adding lime	
Continuous	Washing tank	Solid-Liquid Separation		To separate and cool the clarifier sludge	
Continuous	Rotary drum Filter	Solid-Liquid separation		Thickening sludge obtained from the clarifier	
Continuous	Lime kiln	Drying		Remove the moisture and recovers the lime to reuse as causticizing agent.	
Continuous	Lime Slacker	Mixing		Mixing quick lime with water to prepare white liquor	

Process	Equipment	Unit Operation	Unit Process	Objective	Operating Conditions
Continuous	Causticizing Tank		Causticizing	To prepare white liquor for digestion Na_2CO_3 (aq) + Ca(OH) $_2$ (s) \rightarrow 2NaOH (aq) + CaCO $_3$ (s) $CaCO_3 \rightarrow CaO + CO_2$ $CaO + Water \rightarrow Ca(OH) _2$	
Continuous	Clarifier	Solid – Liquid Separation		Separate white liquor and solid impurities	
Continuous	Storage tank	Storage		Store the white liquor	

Primary process involved in the paper sheet formation:

- Random arrangement of fibers into a wet web
- Removal of free water from wet web by wet pressing
- Progressive removal of additional water by heated rolls

Process	Equipment	Unit Operation	Unit Process	Objective	Operating Conditions
Continuous	Beater	Mechanical Separation		Disintegrate the fibers	
Continuous	Press rolls	Solid-Liquid Separation		Random arrangement of fibers into a web form. Removal of free water (White water) from wet web by pressing and compaction	80% of water removal
Continuous	Suction rolls	Solid-Liquid Separation		Water removal	60-65% of water removal
Continuous	Drying Blanket	Solid-Liquid separation		Removal of residual moisture	5-6% of remaining water removal
Continuous	Calenderia rolls	Physical Rolling		Rolling of sheet of paper	
Continuous	Winding rolls	Physical Rolling		Rolling finished paper	

Uses

Writing-printing papers
News print papers
Coated printing papers
Packaging papers
Tissue papers
Corrugated boards

Unit 4 Natural Products - References

- Dryden C. E, Outlines of Chemical technoloy for the 21st Century, 3rd edition, East-West Press (2004)
- 2. Austin G. T, Shreve's Chemical Process Industries, 5th edition, Mc Graw Hill International editions (1984)
- 3. Finar IL, Organic Chemistry Vol. 1 6th Edition Pearson Education 2009 pp.116-117