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Molecular and Convective Transport 

The total flux of any quantity =  molecular + convective fluxes

The fluxes arising from 
potential gradients or 
driving forces are 
called molecular fluxes

Molecular fluxes
are expressed in the form of 
constitutive (or phenomenological) 
equations for momentum,
energy, and mass transport

Momentum, energy, and 
mass can also be transported 
by bulk fluid motion or bulk 
flow, and the resulting flux is 
called convective flux (due to 
formation of eddies)



Molecular Transport - constitutive (or phenomenological) equations

Substances (solid/liquid/or gases) may behave differently when they are subjected to
the same gradients.

Constitutive equations identify the characteristics of a particular substance.

For instance, if the gradient is momentum, then viscosity is defined by the constitutive
equation called Newton’s law of viscosity

If the gradient is energy, then thermal conductivity is defined by the constitutive
equation called Fourier’s law of heat conduction

If the gradient is concentration, then diffusion coefficient is defined by the
constitutive equation called Fick’s first law of diffusion
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Newton’s law of viscosity
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Consider a fluid contained between two
large parallel plates of area A, separated
by a very small distance Y .

The system is initially at rest
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Newton’s law of viscosity

The system is initially at rest
but at time t = 0 the lower plate
is set in motion in the x-
direction at a constant velocity
V by applying a force F in the x-
direction while the upper plate
is kept stationary
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At time t = 0, the velocity is zero everywhere except at lower plate, which has 
the velocity V. Then the velocity distribution starts as the function of time  

Finally at steady state, a linear velocity distribution is obtained 



Molecular Transport - constitutive (or phenomenological) equations

Experimental results show that the force required to maintain the motion of the
lower plate per unit area (or momentum flux) is proportional to the velocity
gradient, i.e.,

and the proportionality constant, μ, is the viscosity. Equation (1) is a macroscopic
equation. The microscopic form of this equation is given by

(1) 

which is known as Newton’s law of viscosity and any fluid obeying Eq. (2) is
called a Newtonian fluid.

(2) 



Molecular Transport - constitutive (or phenomenological) equations

shear rate

Shear Stress 

Two subscripts: x represents the direction of force, i.e., Fx , and y represents the direction 
of the normal to the surface, i.e., Ay, on which the force is acting.

Therefore, τyx is simply the force per unit area, i.e., Fx /Ay

It is also possible to interpret τyx as the flux of x-momentum in the y-direction.

Since the velocity gradient is negative, i.e., vx decreases with increasing y



Molecular Transport - constitutive (or phenomenological) equations

In SI units, shear stress is expressed in N/m2 (Pa) and velocity gradient in (m/s)/m. 
Thus, the examination of Eq. (1) indicates that the units of viscosity in SI units are

1 Pa·s = 10 P = 103 cP

Viscosity varies with temperature

For liquid viscosity decreases with increasing temperature 
For gas viscosity increases with increasing temperature
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Example 1 (Newton’s Law of Viscosity)



Molecular Transport - constitutive (or phenomenological) equations

Given Solution
A = 2.5 m2 (a) steady state momentum flux  
F1 = 0.5 N
F2 = 2 N
Y = 4 mm  = 4 x 10-3 m 

F/A = (F1 + F2 )/(A) = (0.5 + 2) /(2.5) = 1 N/m2
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Fourier’s Law of Heat Conduction
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Example 2 (Fourier's Law of Heat Conduction)



Molecular Transport - constitutive (or phenomenological) equations

Example 2 (Fourier's Law of Heat Conduction)
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Example 2 (Fourier's Law of Heat Conduction)

gives
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Fick’s Law of Diffusion 

DAB is in m2/s
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Fick’s Law of Diffusion 

The diffusion coefficient of gases has an order of magnitude of 10−5 m2/s under 
atmospheric conditions

Diffusion coefficients for liquids are usually in the order of 10−9 m2/s

Diffusion coefficients for solids vary from 10−10 to 10−14 m2/s.

Assuming ideal gas behaviour, the pressure and temperature dependence of the diffusion 
coefficient of gases  may be estimated from the relation
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Example 3 Fick’s Law of Diffusion 

Air at atmospheric pressure and 95 ◦C flows at 20 m/s over a flat plate of naphthalene 80 cm long in the 
direction of flow and 60 cm wide. Experimental measurements report the molar concentration of naphthalene in 
the air, cA, as a function of distance
x from the plate as follows:

Home 
Work
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vx decreases with 
increasing y,

Upper Plate with Area, A

Lower Plate  with Area, A 
T decreases with 
increasing y,

C decreases with 
increasing y,

DAB is in m2/s

Macroscopic 
equation

Macroscopic 
equation

Macroscopic 
equation

Microscopic 
equation

Microscopic 
equation

Microscopic 
equation
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DIMENSIONLESS NUMBERS
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DIMENSIONLESS NUMBERS

Although the constitutive equations are similar, they are not completely analogous
because the transport properties (μ, k, DAB) have different units. These equations can
also be expressed in the following forms:
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DIMENSIONLESS NUMBERS

Although the constitutive equations are similar, they are not completely analogous
because the transport properties (μ, k, DAB) have different units. These equations can
also be expressed in the following forms:

Momentum diffusivity  or Kinematic viscosity (v)
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DIMENSIONLESS NUMBERS

Although the constitutive equations are similar, they are not completely analogous
because the transport properties (μ, k, DAB) have different units. These equations can
also be expressed in the following forms:

Thermal diffusivity (a)



Molecular Transport - constitutive (or phenomenological) equations
DIMENSIONLESS NUMBERS

Although the constitutive equations are similar, they are not completely analogous
because the transport properties (μ, k, DAB) have different units. These equations can
also be expressed in the following forms:

Mass diffusivity 
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DIMENSIONLESS NUMBERS

Although the constitutive equations are similar, they are not completely analogous
because the transport properties (μ, k, DAB) have different units. These equations can
also be expressed in the following forms:
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DIMENSIONLESS NUMBERS

Note that the terms ν, α, and DAB all have the same  units, m2/s
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The ratio of momentum diffusivity to thermal diffusivity gives the Prandtl number, Pr:
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The ratio of momentum to mass diffusivities gives the Schmidt number, Sc:
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Convective  Transport

For a single phase system composed of n components, the general definition of a 
characteristic velocity is given by



Convective  Transport



Convective  Transport

the ratio of the convective flux to the molecular flux is given by

(1) 



Convective  Transport

“Gradient of Quantity/Volume”  can be expressed as

The use of Eq. (2) and (1) 

(2) 

The ratio of the convective flux to the molecular flux is known as the Peclet number, Pe



Convective  Transport



Rate of mass entering or leaving the system 

The above equation simplifies into 



Rate of mass entering or leaving the system 

The total mass flow rate, 𝑚̇, entering and/or leaving the system by a conduit in the form



Rate of Energy Entering and/or Leaving the System



Rate of Energy Entering and/or Leaving the System

The total flux equation 
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