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Molecular and Convective Transport

The total flux of any quantity = molecular + con\cctive fluxes

The fluxes arising from
potential gradients or
driving forces are
called molecular fluxes

Molecular fluxes ‘)

are expressed in the form of
constitutive (or phenomenological)
equations for momentum,

energy, and mass transport

Momentum, energy, and
mass can also be transported
by bulk fluid motion or bulk
flow, and the resulting flux is
called convective flux (due to
formation of eddies)



Molecular Transport - constitutive (or phenomenological) equations

Substances (solid/liquid/or gases) may behave differently when they are subjected to
the same gradients.

Constitutive equations identify the characteristics of a particular substance.

For instance, if the gradient is momentum, then viscosity is defined by the constitutive
equation called Newton’s law of viscosity

If the gradient is energy, then thermal conductivity is defined by the constitutive
equation called Fourier’s law of heat conduction

If the gradient is concentration, then diffusion coefficient is defined by the
constitutive equation called Fick’s first law of diffusion



Molecular Transport - constitutive (or phenomenological) equations

Newton’s law of viscosity
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Molecular Transport - constitutive (or phenomenological) equations

Newton’s law of viscosity

The system is initially at rest

but at time 7 =0 the lower plate
is set in motion in the x-
direction at a constant velocity
V by applying a force F'in the x-
direction while the upper plate
is kept stationary
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Molecular Transport - constitutive (or phenomenological) equations
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Molecular Transport - constitutive (or phenomenological) equations

Upper Plate with Area, A
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At time t = 0, the velocity is zero everywhere except at lower plate, which has
the velocity V. Then the velocity distribution starts as the function of time

Finally at steady state, a /inear velocity distribution is obtained



Molecular Transport - constitutive (or phenomenological) equations

Experimental results show that the force required to maintain the motion of the
lower plate per unit area (or momentum flux) is proportional to the velocity
gradient, i.e.,

F 1%
A —_ Y (1)
M v Transport . ]“’ .
omentum property e cu;ﬂy
flux gradient

and the proportionality constant, u, is the viscosity. Equation (1) is a macroscopic
equation. The microscopic form of this equation is given by

dvy

Tyy = — [ 7 = _J'-i}:'}'_t (2)

which is known as Newton’s law of viscosity and any fluid obeying Eq. (2) is
called a Newtonian fluid.



Molecular Transport - constitutive (or phenomenological) equations

dv, _

Tyy|= — | —_ — -

Shear Stress ——>| - H dy H¥vx
shear rate

Two subscripts: x represents the direction of force, i.e., F., and y represents the direction
of the normal to the surface, i.e., Ay, on which the force is acting.

Therefore, Ty IS simply the force per unit area, i.e., Fx/Ay

It is also possible to interpret 7, as the flux of x-momentum in the y-direction.

Since the velocity gradient is negative, i.e., v decreases with increasing y



Molecular Transport - constitutive (or phenomenological) equations

In Sl units, shear stress is expressed in N/m?2 (Pa) and velocity gradient in (m/s)/m.
Thus, the examination of Eq. (1) indicates that the units of viscosity in Sl units are

l'\'/‘m2 N-s (l-;g-m/sg)-s kg
# = = Pa-s = 5 = =
(m/s)/m m? m? m-s

1Pa-s=10P =103 cP

Viscosity varies with temperature

For liquid viscosity decreases with increasing temperature
For gas viscosity increases with increasing temperature



Molecular Transport - constitutive (or phenomenological) equations

Example 1 (Newton’s Law of Viscosity)

A Newtonian fluid with a viscosity of 10 cP is placed between two large parallel plates.
The distance between the plates is 4 mm. The lower plate is pulled in the positive x-
direction with a force of 0.5 N, while the upper plate is pulled in the negative x-
direction with a force of 2 N. Each plate has an area of 2.5 m?. If the velocity of the
lower plate is 0.1 m/s, calculate:

(a) The steady-state momentum flux

(b) The velocity of the upper plate



Molecular Transport - constitutive (or phenomenological) equations

F= 2N-—I——

Given
A =2.5m?
F, =0.5N
F,=2N

Y =4mm =4x103m

4 mm

m]_'
X I —— F = 05N

VJ = 0.1 mjs

Solution
(a) steady state momentum flux

F v
_ - i _
Transport _
Momentum ranqpol Velocity
property .
flux gradient

FlA=(F,+F,)/(4) = (0.5+2) /(2.5) = 1 N/m’



Molecular Transport - constitutive (or phenomenological) equations

b) Let V> be the velocity of the upper plate. From Eq. (2. 7,, = — dvx
. y
Y %]
2 Ty Y
r::r'xf d}"=—ﬂf do, = V=V - 1
0 Vi L
Substitution of the values into Eq. (1) gives
1)(4 x 103

Vom0 — DEXITT g s @)

10 x 10-3

The minus sign indicates that the upper plate moves in the negative x-direction.



Molecular Transport - constitutive (or phenomenological) equations

Fourier’s Law of Heat Conduction
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Molecular Transport - constitutive (or phenomenological) equations

Example 2 (Fourier's Law of Heat Conduction)

One side of a copper slab receives a net heat input at a rate of 5000 W due to radiation.
The other face is held at a temperature of 35°C. If steady-state conditions prevail, calculate

the surface temperature of the side receiving radiant energy. The surface area of each face
is 0.05 m?, and the slab thickness is 4 cm.



Molecular Transport - constitutive (or phenomenological) equations

Example 2 (Fourier's Law of Heat Conduction)

Solution

FC

:

[ |

!

Physical Properties
For copper: k =398 W/m-K



Molecular Transport - constitutive (or phenomenological) equations

Example 2 (Fourier's Law of Heat Conduction)

System: Copper slab

Under steady conditions with no intemal generation, the conservation statement for energy

reduces to

Rate of energy in = Rate of energy out =5000 W

Since the slab area across which heat transfer takes place is constant, the heat flux through

the slab is also constant, and is given by

5000

=005

Therefore, the use of Fourer’s law of heat conduction, Eq.

= 100,000 W/m?2

rch

dy

0.04 35
100,000 f dy = —398 f dT = T,=45.1°C
0 T

[

gives



Molecular Transport - constitutive (or phenomenological) equations

Fick’s Law of Diffusion
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Molecular Transport - constitutive (or phenomenological) equations

Fick’s Law of Diffusion

The diffusion coefficient of gases has an order of magnitude of 10 m?2/s under
atmospheric conditions

Diffusion coefficients for liquids are usually in the order of 10° m2/s

Diffusion coefficients for solids vary from 1071%to 10714 m?/s.

Assuming ideal gas behaviour, the pressure and temperature dependence of the diffusion
coefficient of gases may be estimated from the relation

i
TE..' P

Dap o
\B P




Molecular Transport - constitutive (or phenomenological) equations

Example 3 Fick’s Law of Diffusion

Air at atmospheric pressure and 95 °C flows at 20 m/s over a flat plate of naphthalene 80 cm long in the
direction of flow and 60 cm wide. Experimental measurements report the molar concentration of naphthalene in
the air, ¢, as a function of distance

x from the plate as follows:

X ca
(cm) (mol/m*)
0 0.117
10 0.093
20 0.076
30 0.063
40 0.051
50 0.043

Determine the molar flux of naphthalene from the plate surface under steady conditions.



Molecular Transport - constitutive (or phenomenological) equations
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Molecular Transport - constitutive (or phenomenological) equations
DIMENSIONLESS NUMBERS
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Molecular Transport - constitutive (or phenomenological) equations

DIMENSIONLESS NUMBERS

Although the constitutive equations are similar, they are not completely analogous
because the transport properties (i, k, D ,;) have different units. These equations can

also be expressed in the following forms:

Tyr = —Ed—(pv_r) 2 = constant Py = momentum/volume
' pdy
gy =——=——(pCpT) pC p = constant pCpT = energy/volume
pCp dy
. dpa
Jay, =—Dap—— £ = constant 04 = mass of A /volume

dy



Molecular Transport - constitutive (or phenomenological) equations

DIMENSIONLESS NUMBERS

Although the constitutive equations are similar, they are not completely analogous
because the transport properties (i, k, D ,;) have different units. These equations can

also be expressed in the following forms:
~____—> Momentum diffusivity or Kinematic viscosity (v)

d
Tyy = —E-jx—(pv_r) 2 = constant Py = momentum/volume
' p Hy
k d i~ o -~
gy =——=——(pCpT) pC p = constant pCpT = energy/volume
' pCp dy
. dpa
Jay, =—Dap—— £ = constant 04 = mass of A /volume

dy



Molecular Transport - constitutive (or phenomenological) equations
DIMENSIONLESS NUMBERS

Although the constitutive equations are similar, they are not completely analogous
because the transport properties (i, k, D ,;) have different units. These equations can

also be expressed in the following forms:
Thermal diffusivity (& >

d
Tyr = —E—(p c) £ = constant £v,y = momentum/volume
pdy
gy =|——=F—(pCpT) pC p = constant pCpT = energy/volume
) JGCP (v
dpa
ja, =—Dsp—— £ = constant p4 = mass of A4 /volume



Molecular Transport - constitutive (or phenomenological) equations
DIMENSIONLESS NUMBERS

Although the constitutive equations are similar, they are not completely analogous
because the transport properties (i, k, D ,;) have different units. These equations can

also be expressed in the following forms:

JA, =

Tyy = —E—(pv_r) £ = constant
' pdy
gy =——=—(pCpT) pC p = constant
' pCp dy
(d
—Dap PA £ = constant
dy

\‘ Mass diffusivity

PUy = momentum/volume
pCpT = energy/volume

p4 = mass of A4 /volume



Molecular Transport - constitutive (or phenomenological) equations

DIMENSIONLESS NUMBERS

Although the constitutive equations are similar, they are not completely analogous
because the transport properties (i, k, D ,;) have different units. These equations can

also be expressed in the following forms:

Tyr = —Ed—{pv_r) 2 = constant Py = momentum/volume
' pdy
gy =——=——(pCpT) pC p = constant pCpT = energy/volume
oCpdy L0
: dpa
Jay, =—Dap—— £ = constant p4 = mass of A4 /volume

dy



Molecular Transport - constitutive (or phenomenological) equations
DIMENSIONLESS NUMBERS

. Analogous terms in constitutive equations for momentum, energy, and mass (or mole)
transfer in one-dimension

Momentum Energy Mass Mole
Molecular flux Tyx gy jA, I3,
Transport property 7 k Dap Dag
. s dvy dT dpy dcy
Gradient of driving force — —_ —
& o dy dy dy dy
Diffusivity v @ Dag Dag
Quantity/Volume PUx pE pT PA cA
. , d(pv d(pCpT d dc,
Gradient of Quantity/Volume (pvx) M A -
‘ dy dy dy dy

Note that the terms v, a, and D ,; all have the same units, m?/s



Molecular Transport - constitutive (or phenomenological) equations

dvy
I d
Dy = —H dy H¥yx Tyy = _%E('OUI) £ = constant PV = momentum/volume
k d = ~ ~
dT Gy = — —(pCpT) pC p = constant pCpT = energy/volume

qy=—k o ' pCpdy

. dpa
ja, =—Dap— £ = constant pA = mass of 4 /volume

. ) dcy - d}-‘

T3, =—Dap -

Molecular |  ( Transport Gradient of Molecular — (Diffusivity) Gradient of
flux ~ \ property driving force flux B y Quantity/Volume

N/




Molecular Transport - constitutive (or phenomenological) equations

The ratio of momentum diffusivity to thermal diffusivity gives the Prandtl number, Pr:

v Cp
Prandtl number = Pr=— = il
o k
The Prandtl number i1s a function of temperature and pressure. However, its dependence on
temperature, at least for liquids, is much stronger. The order of magnitude of the Prandtl
number for gases and liquids can be estimated as

10%)(107°
Pr= ( l){‘f—? ) =1 for gases

10%)(10~3
Pr = ( l){;_l ) =10 for liquids




Molecular Transport - constitutive (or phenomenological) equations

The ratio of momentum to mass diffusivities gives the Schmidt number, Sc:

v n
Dap  pDap

Schmidt number = Sc =

The order of magnitude of the Schmidt number for gases and liquids can be estimated as
10—>
-~ (H(107)

103
Cc =
(10%)(10=7)

Sc

| for gases

=10  for liquids



Molecular Transport - constitutive (or phenomenological) equations

Finally, the ratio of @ to D p gives the Lewis number, Le:

k S
Lewis number = Le = - @ P— — o€
Dap pCpDap Pr




Convective Transport

Aux velocity

) — (Quantity/Volume) (Characterlsnc)

(Cﬂnvective

For a single phase system composed of n components, the general definition of a
characteristic velocity is given by

n
Upeh = E ﬁf Uy
[

where fB; is the weighting factor and v; 1s the velocity of a constituent.



Convective Transport

Common characteristic velocities

Charactenstic Velocity Weighting Factor Formulation
Mass average Mass fraction (e; ) V=Y o5y
Molar average Mole fraction (x;) v =3 xiv
Volume average Volume fraction (c; V;) o Y i Vi




Convective Transport

Since the total flux of any quantity is the sum of its molecular and convective fluxes,

Total \ [ Transport Gradient of i Quantity \ [ Characteristic
flux / — \ property driving force Volume velocity

Molecular flux Convective flux

or,

Total _ (Diffusivity) Gradient of n Quantty \ [ Characteristic
flux | y Quantity/Volume Volume velocity

Molecular flux Convective flux

the ratio of the convective flux to the molecular flux is given by

Convective flux  (Quantity/Volume)(Characteristic velocity)

Molecular flux  (Diffusivity)(Gradient of Quantity/Volume) (1)




Convective Transport

Convective flux  (Quantity/Volume)(Characteristic velocity)

Molecular flux (Diffusivity@nt of Quantit}ff‘fo@

“Gradient of Quantity/Volume” can be expressed as

Difference in Quantity/Volume

Gradient of Quantity/Volume = Characteristic length (2)

The use of Eq. (2) and (1)

Convective flux  (Characteristic velocity)(Characteristic length)

Molecular flux Diffusivity

The ratio of the convective flux to the molecular flux is known as the Peclet number, Pe



Convective Transport

The ratio of the convective flux to the molecular flux 1s known as the Peclet number, Pe.
Therefore, Peclet numbers for heat and mass transfers are

Peyj — Ueh Leh
(Vi
Ueh Leh
Pey =
Dap

Hence, the total flux of any quantity is given by

Molecular flux

Pe <« 1

Molecular flux + Convective flux Pe~1
Convective flux Pe> 1

Total flux =



Rate of mass entering or leaving the system

The mass flow rate of species i entering and/or leaving the system, m;, is expressed as

m; =

Pey > 1

(

Mass
Diffusivity

)

Gradient of

N Mass of 1 Characteristic
Mass of |HV¢:-lume Volume velocity

_ \

ar,

e

Molecular mass flux of species i

Ll

Convective mass flux of species |

The above equation simplifies into

. (Mass of 1
mi=—

Average Flow
Volume velocity area

m; = p;i{(v)A = p; Q

)

(

Flow
area

)



Rate of mass entering or leaving the system

The total mass flow rate, m, entering and/or leaving the system by a conduit in the form

On a molar basis,




Rate of Energy Entering and/or Leaving the System

The rate of energy entering and/or leaving the system, E, is expressed as

L. - L -

-

P — Thermal Gradient of + Energy Characteristic Flow
- diffusivity Energy/Volume Volume velocity area

Molecular energy flux Convective energy flux

As in the case of mass, energy may enter or leave the system by two means:

e By inlet and/or outlet streams,
¢ By exchange of energy between the system and its surroundings through the boundaries
of the system in the form of heat and work.



Rate of Energy Entering and/or Leaving the System

Pem > 1

P - Thermal Gradient of i Energy Characteristic Flow
o diffusivity Energy/Volume Volume velocity area

" L "

"

Molecular energy flux Convective energy flux

The total flux equation

P Energy Average \ ( Flow
~ \ Volume velocity area
Energy per unit volume, on the other hand, is expressed as the product of energy per unit
mass, E, and mass per unit volume, i.e., density, such that Eq. (2.4-16) becomes

. Energy Mass Average \ { Flow ~
Mass Volume / \ velocity area

-

Mass flow rate
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