Tutorial : 12 SCILAB Programming - Applications of Chemical Engineering Problems (Unsteady state problems)

Date : 6/10/2016

Aim: To obtain solution for Ordinary differential equation of first order in reaction kinetics using SCILAB

Problem Statements

Exercise 1:

Consider four chemical species A, B, C and D that represents $\mathrm{O}_{2}, \mathrm{H}_{2}, \mathrm{OH}, \mathrm{H}_{2} \mathrm{O}$. The reaction between these species can be written as

$$
\begin{equation*}
A+B \xrightarrow{k_{1}} C+D \tag{1}
\end{equation*}
$$

This reaction is not an instantaneous reaction, but will react at a rate proportional to the concentration of reactants A and B with rate constant k_{1}. Consider that there is a second reaction and the reaction is represented as

$$
\begin{equation*}
A+A+C \xrightarrow{k_{2}} B \tag{2}
\end{equation*}
$$

The above two reaction takes place in a reaction system. From the reaction scheme the concentration of chemical species are as follows:

$$
\begin{aligned}
& \frac{\mathrm{d}[\mathrm{~A}]}{\mathrm{dt}}=-\mathrm{k}_{1}[\mathrm{~A}][\mathrm{B}]-2 \mathrm{k}_{2}[\mathrm{~A}][\mathrm{A}][\mathrm{C}] \\
& \frac{\mathrm{d}[\mathrm{~B}]}{\mathrm{dt}}=-\mathrm{k}_{1}[\mathrm{~A}][\mathrm{B}]+\mathrm{k}_{2}[\mathrm{~A}][\mathrm{A}][\mathrm{C}] \\
& \frac{\mathrm{d}[\mathrm{C}]}{\mathrm{dt}}=\mathrm{k}_{1}[\mathrm{~A}][\mathrm{B}]-\mathrm{k}_{2}[\mathrm{~A}][\mathrm{A}][\mathrm{C}] \\
& \frac{\mathrm{d}[\mathrm{D}]}{\mathrm{dt}}=\mathrm{k}_{1}[\mathrm{~A}][\mathrm{B}]
\end{aligned}
$$

In the above equations square brackets denotes the concentration of species A, B, C, and D. Let us see the first equation

$$
\frac{\mathrm{d}[\mathrm{~A}]}{\mathrm{dt}}=-\mathrm{k}_{1}[\mathrm{~A}][\mathrm{B}]-2 \mathrm{k}_{2}[\mathrm{~A}][\mathrm{A}][\mathrm{C}]
$$

The rate of reaction (1) will depend proportionally on $[A]$ and $[B]$, the constant of proportionality given by k_{1}. So the rate of reaction 1 will be given by $k_{1}[A][B]$. Each instance of reaction 1 will use up one unit of A . So the rate of change of concentration of A due to
reaction 1 will be equal to $-k_{1}[A][B]$. The minus signifying one unit being used up. There are similar terms in the other ODE's corresponding to using up the species B and creating species C and D. The rate of the second reaction will depend proportionally on $[A],[A]$ again, and $[C]$ and so the rate of reaction (2) will be $k_{2}[A][A][C]$. Each reaction (2) will use up 2 units of A, so the rate of change of concentration of A due to reaction 2 will be equal to $-2 k_{1}[A][A][C]$, with similar terms in the ODE's denoting using one unit of C and creating one unit of B.Use Scilab to approximate the solution to this system of ODE's. Consider, $t=0 ; 0.001 ; 0.002$; $\ldots .0 .1$. Take $k_{1}=1 \mathrm{e} 2, k_{2}=1$, Initial concentrations are $[A]=1 \mathrm{~mol} / \mathrm{L},[B]=1 \mathrm{~mol} / \mathrm{L},[C]=0$ $\mathrm{mol} / \mathrm{L}$, Also plot the graph showing the concentration profile.

SCILAB Code:

Now we can use SCILAB to approximate the solution to this system of ODE's. We have four chemical species, so we will have a system of four equations. We will make the relationship $c_{1}=[\mathrm{A}], c_{2}=[\mathrm{B}], c_{3}=[\mathrm{C}], c_{4}=[\mathrm{D}]$.

Open SCINOTES and create the following function file:

```
function dc=rate(t, c)
    f1 = k1* \
    f2 = k2*c(1)*c(1)*c(3)
    dc(1) = -f1 - 2*f2
    dc(2) = -f1 + f2
    dc(3) = f1 - f2
    dc(4) = f1
endfunction
```

Now goto console window and execute the function file

```
-->exec('C:\Users\User-Pc\Desktop\rate.sci', -1)
-->k1 = 1e2;
-->k2 = 1;
-->t = 0:0.001:0.1;
-->c0 = [1 ;1; 0; 0];
-->c = ode(c0,0,t,rate);
-->plot(t,c)
-->xgrid(1)
-->title('Rate Kinetics ODE')
-->xlabel('Time,min','fontsize',4)
-->ylabel('Concentration, mol/L','fontsize',4)
-->legend(['A','B','C','D'],[1 2 3 4],"ur")
```


Concentration Profile

Exercise 2: The dynamic model for an isothermal, constant volume, chemical reactor with asingle second order reaction is:

$$
\begin{aligned}
\frac{d C_{A}}{d t} & =\frac{F}{V} C_{A f}-\frac{F}{V} C_{A}-k C_{A}^{2} \\
\frac{F}{V} & =1 \mathrm{~min}^{-1}, C_{A f}=1 \mathrm{gmol} / \mathrm{liter}, k=1 \text { iter } / \mathrm{gmol} . \mathrm{min}
\end{aligned}
$$

Find the steady-state $f(x)=-x 2$ and substituting the parameter and input values we find

$$
1-C_{A s}-C_{A s}^{2}=0
$$

where the subscript s is used to denote the steady-state solution. For notational convenience, let $x=C_{A s}$ and write the algebraic equation as

$$
f(x)=-x^{2}-x+1=0
$$

We can directly solve this equation using the quadratic formula to find x.
Use SCILAB and determine the value of x.
Solution: Goto console window and try the following:

$$
\begin{aligned}
& -->x=p o l y\left(0, x^{\prime}\right) ; \\
& -->p=-x^{\wedge} 2-x+1 \\
& p \quad \\
& 1-x-x \\
& 1->\text { roots }(p)
\end{aligned}
$$

```
ans =
    - 1.618034
    0.6180340
```

Therefore, $x=-1.618$ and $x=+0.618$ to be the solutions. Obviously a concentration cannot be negative, to the only physically meaningful solution is $x=0.618$.

