Objective

The use of Microsoft Excel Spread $\mathsf{Sheet}^{^{\mathsf{TM}}}$ to solve material balance for the given feed stream

Theory

The use of Excel to solve mass balances for a process consisting of a feed stream, a mixer in which the feed stream is mixed with the recycle stream, and a reactor, followed by a separator where the product is removed and the reactants are recycled. **The reactor is limited by chemical equilibrium consideration.** The process takes hydrogen and nitrogen (in a 3:1 ratio) to make ammonia. The reactor is limited by equilibrium; you will prepare the spreadsheet in stages to aid troubleshooting. Thus, prepare a spreadsheet as shown in Figure using 25 percent conversion per pass in the reactor.

Process Diagram

Reaction involved

 $N_2 + 3H_2 \rightarrow 2NH_3$

Simulation Diagram

Algorithm

Step 1 The mixer takes streams 1 and 6, adds them, and puts them into stream 2.

- Step 2 Stream 3 is not really a stream but it is the moles reacting so the reaction stoichiometry is clearly displayed.
- Step 3 Cell EI4 is set to the negative (for reactants) of nitrogen in stream 2 times the conversion (in cell E 19).
- *Step 4* Cell E 15 is set to three times cell E 14 (hydrogen uses three times the nitrogen reacting), and cell EI6 is set to twice the nitrogen in cell E14. In this column, the signs are negative for reactants and positive for products. The spreadsheet clearly shows that the stoichiometry is correct.
- *Step 5* Stream 4 is the sum of streams 2 and 3.
- Step 6 Stream 5 takes 98 percent of the ammonia and 0.5 percent of the nitrogen and hydrogen.
- *Step 7* The rest goes out in stream 6. You can easily check the mole balance around the separator.
- Step 8 Turn on the iteration feature for the circular reference and the problem is solved.

Result Output

A F	lome	Layo	ut Tabl	es	Charts	SmartA	Art For	nulas	Data	Review												へ 奈・
Edit				Font				Alignment					Number		Format		Cells		Themes			
Ê	🗸 🛃 F	ill +	Calibri (Boo	dy)	v 12	• A• A			abc 🔻 📰	칮 Wrap Tex	t - G	eneral		-		[Normal] 🔤 🛓	 • .	•	Aa -	•
Paste	Ø 0	lear *	BI	U	•	👍 🖣 🗛	-		¢ = \$	Merge	-	• %	•.0 .00	,00, ≎.0	Conditional	E	3ad	lr	sert Delete	Format	Themes 4	\a•
	Δ	F			D	F	F	G	H		1	1	К			M	N	0	Р	0	R	s =
1 1	B	16	ar noite	D	1.20531	negloxa n	ion and a	00000	is élem	12 01 08	al sal	1			-					4		
2 2	av av			U		E		G	marten	1												
3 3							6															
4 4				dw a	RIOVAL	no illivent	voltam a	ioaneti	Umi2 3	il sona												
6 5				6					-tronte													
7 7										6												
8 8										Supart												
9 9			1 .			2		4	-	-	5											
10 10				Mixer			Reactor		- Sep	arator		*										
11 11							3															
12 12																						
13 13			1	2		3	4	5		6												
14 14	Nitroge	n	100.00	39	4.09	-98.52	295.57	1.	.48	294.09												
15 15	Hydrog	en	300.00	118	32.27	-295.57	886.70	4	43	882.27												
16 16	Ammor	nia	0.00		4.02	197.04	201.07	197	.04	4.02												
17 17	Total		400.00	158	0.38	-197.04	1383.33	202	.96	180.38												
18 18															•							
19 19				Conver	rsion	0.25																
20																						
21																						
22																						
23																						
24																						
25						_																_
20		-																				
27						-	-						-									
20		-				-	-	-					-				-		-			
29																						
30						-	-						-									¥
27		-				-	-	-					-				-					v
32		4 + +1	Sheet1	+			1						6					1			1	
	11 Nor	mal View	Reader	Beady								Euro-O			_							
	- non	indi viev	Ready										Sum=0		•							//.

Reference:

Bruce A. Finlayson, *Introduction to Chemical Engineering Computing*, John Wiley and Sons, 2006 Edition, pp 62-63.