## Solved examples in degree-of-freedom analysis for single unit process

## **DEGREE-OF-FREEDOM ANALYSIS**

Everyone who has done material balance calculations has had the frustrating experience of spending a long time deriving and attempting to solve equations for unknown process variables, only to discover that not enough information is available. Before you do any lengthy calculations, you can use a properly drawn and labeled flowchart to determine whether you have enough information to solve a given problem. The procedure for doing so is referred to as **degree-of-freedom analysis**.

To perform a degree-of-freedom analysis, draw and completely label a flowchart, count the unknown variables on the chart, then count the independent equations relating them, and subtract the second number from the first. The result is the number of degrees-of-freedom of the process. In general degree-of-freedom (DoF) analysis for steady state material balance problem is written as

**Degree-of-Freedom = number of unknowns – numbers of independent equations** For material balance problems with chemical reactions, Degree-of-Freedom is written as

**DoF** = number of unknowns + number of independent reactions – number of independent material balance equations – auxillary relation (density relationship relating mass flow rate and volumetric flow rate, specified split – bottom and top product as well). There are three possibilities:

If DoF = 0, the system is completely defined and you get a unique solution

If DoF > 0, the system is under defined and there are infinite number of solutions

If DoF < 0, the system is over defined and there are too many restrictions. Over defined problems cannot be solved to be consistent with all equations.

## **INDEPENDENT EQUATION**

Equations are independent if you cannot derive one by adding and subtracting combinations of the others. For example, only two of the three equations x = 3, y = 2 and x + y = 5 are independent; anyone of them can be obtained from the other two by addition or subtraction.

In other words, a set of equations is independent if you cannot derive one by adding and subtracting combination of others.

(a) Is the following set of equation independent?

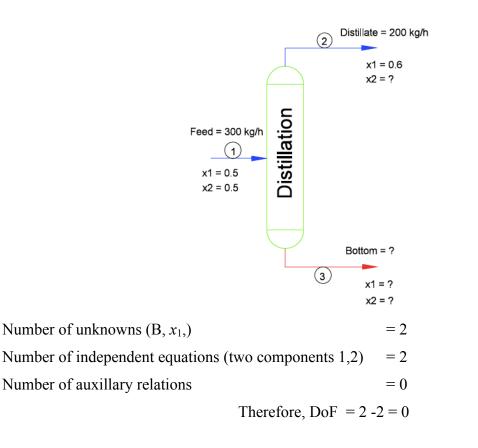
$$x + 2y + z = 1$$
 (1)  
 $2x + y - z = 2$  (2)  
 $y + 2z = 5$  (3)

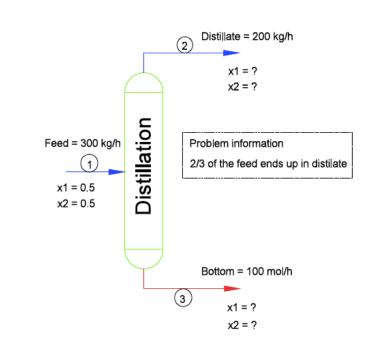
## Solution

Yes, the above equations are independent because we cannot derive one by adding and subtracting the combination of others.

(b) Is the following set of equations independent?

$$x + 2y + z = 1$$
 (1)  


$$2x + y - z = 2$$
 (2)  


$$3x - 3y = 5$$
 (3)

the above set of equations are not independent because we can derive (3) by adding equations (1) and (2)

Now we introduce the degree-of-freedom analysis for single unit operation where the steady state conditions prevail.

Problem 1: Perform a degree-of-freedom analysis for flow chart given below





Problem 2: Perform a degree-of-freedom analysis for flow chart given below

Number of unknowns ( $x_1$  in Bottom and  $x_1$  in Distillate) = 2

Number of independent equations (two components 1,2) = 2

Number of auxillary relations (2/3 of the feed = 200 kg/s ends up in distillate which is already given in the flowchart may not be a useful relation.

Hence auxillary relation for this problem

Therefore, DoF = 2 - 2 = 0

= 0