```
Lesson 9
           Conditional Control Statements
Exercise: 1
Use of if statement
To test whether a number is even or odd
a=input('Enter an integer: ');
if rem(a, 2) == 0 disp('Even INTEGER!');
end
Save the program as evenodd.m and execute in the command window as follows
>> evenodd
Enter an integer: 18
EVEN INTEGER!
Exercise: 2
The use of if-else-end STATEMENT
% To test whether a number is a prime or composite n = input
('Enter a natural number: ');
if isprime(n)
fprintf ('The given number %d is a prime, n);
else fprintf('The given number %d is a composite number'); end
Save the program as prycomp.m and execute the same in command prompt.
>> prymcomp
Enter a natural number: 191 The given number 191 is a prime
>> prymcomp Enter a natural number: 637
The given number 637 is a composite number
Exercise 3:
The use of if-elseif-elseif.....else-end statement
A program to declare the result of a student based on the average mark obtained by
him/her.
The classification of the result is as follows:
Distinction
           average mark \leq 75
First Class
           60 \le  average mark \le 75
Second Class 45 \le average mark \le 60
```

Third Class

Fail

30 < = average mark < 45

average mark < 30

Create the following script file in the editor window.

```
% result.m
% to declare the result according to average marks obtained
avgMark=input('Enter the average mark:');
if avgMark>=75
    disp('Passed with distinction!')
elseif avgMark>=60
    disp('Passed in the first class!')
elseif avgMark>=45
    disp('Passed in the second class!')
elseif avgMark>=30
    disp('Passed in the third class!')
else
    disp('Fail, not passes')
end
```

Save the progam as result.m and run the same in command window.

Nested Control Statements

Loops

As the name implies, loops perform operations repetitively. There are two types of loops, depending on how the repetitions are terminated.

- a. for loop
- b. while loop

A for loop ends after a specified number of repetitions.

A while loop ends on the basis of logical conditions

The forend structure

A for loop repeats statements a specific number of times. Its general syntax

End

is

The <code>forloop</code> operates as follows. The <code>index</code> is a variable that is set at an initial value, <code>start</code>. The program then compares the index with a desired final value, <code>finish</code>. If the index is less than or equal to <code>finish</code>, the program executes the <code>statements</code>. When it reaches the <code>end</code> line that marks the end of the loop, the <code>index</code> variable is increased by the <code>step</code> and the program loops back up to the

forstatement. The process continues until the index becomes greater than the finish value. At this point the loop terminates as the program skips down to line immediately following the end statement

Exercise 4:

Use of for loop to compute a factorial

Develop a function file to compute the factorial

```
0! = 1

1! = 1

2! = 1 x 2 = 2

3! = 1 x 2 x 3 = 6

4! = 1 x 2 x 3 x 4 = 24

5! = 1 x 2 x 3 x 4 x 5 = 120
```

```
functionfout = factor(n)
%factor(n):input for n!; fout factorial output or result
%Computes the product of all the integers from 1 to n
x =1;
fori = 1:n
x = x*i;
end
fout=x
end
```

Save the function file by the default name factor and execute it as given below from command window

```
>>factor(6)

fout =
    720

ans =
    720
```

The while loop structure

A while loop repeats as long as logical condition is true. Its general syntax is

```
while condition
```

```
statements end
```

The statement between while and end are repeated as long as the condition is true. A simple example is given below:

Exercise 5:

Develop a script file as given below:

Open the editor window and type the following

```
x = 8
while x > 0
x = x - 3;
disp(x)
end
```

Save the file by default as untitled3 and execute the same in command window as shown below

```
>>untitled3
x =
8
5
2
-1
```

Exercise 6:

```
% nestedifelse.m
N=input ('Enter an integer:');
   if rem(N,2) == 0 % embedding starts
disp('OK, Even Number!');
   if rem(N,7) == 0 % embedding starts
   disp('An even number divisible by 7!!');
   else
   disp('But not divisible by 7.');
   end % embedded ends.
else
disp('Odd Number!');
end % embedding ends
```

Save the progam as nestedifelse.m and run the same in command window.