Lesson 16 Linear Algebraic Equation

Exercise no. 1 Navie Gauss Elimination with out Pivoting
Use of Gauss Elimination without pivoting to solve the system of linear algebraic
equation as given below

3x,-0.1x,-02x, = 7385 (1)

0.1x,-7x,—0.3x, -19.3 ()

0.3x,-0.2x, +10x, 714 3)

The first part of the procedure is forward elimination. Multiply Eq. (1) by 0.1/3 and
subtract the result from Eq. (2) to give
7.00333x,-0.293333x,=-19.5617
Then multiply Eq. (1) by 0.3/3 and subtract it from Eq. (3). After this the set of
equation is
3x,- 0.1x,- 0.2x, = 785 4)
7.00333x,- 0.293333x, = -19.5617  (5)
-0.190000x, +10.0200x, =70.6150 (6)

To complete the forward elimination, x, must be removed from Eq. (6). To
accomplish this, multiply Eq. (5) by 0.190000/7.00333 and subtract the result from
Eq. (6). This eliminates x, from the third equation and reduces the system to an upper
triangular form, as in
3x,- 0.1x,- 0.2x, = 785 (7)
7.00333x,- 0.293333x, = -19.5617 (8)
10.0120x, =70.0843 9)
We can now solve these equations by back substitution. First, Eq. (9) can be solved
for

~70.0843

x, =——— =7.00003
10.0120
This result can be back-substituted into Eq. (8), which can then be solved for

L ~19.5617 4+ 0.293333(7.00003)
: 7.00003

Finally, x3 = 7.00003 and x, = -2.50000 can be substituted back into Eq. (7), which

=-2.500700

can be solved for

_ 7.85+0.1(=2.50000) +0.2(7.00003)

X, =3.00000
3




Although there is a slight round-off error, the results are very close to the exact
solution of x; = 3, x, = -2.5, and x3 = 7. This can be verified by substituting the results
into the original equation set:

3(3)—0.1(=2.50000) +0.2(7.00003) =7.84999 =7.85
0.1(3)+7(=2.5)-0.3(7.00003) =-19.30000 =19.3
0.3(3)—0.2(-2.5)+10(7.00003) =71.4003=714

The following MATLAB CODE will solve the system of linear equation as discussed

above using Guass elimination without pivoting.

function x = GuassNaive(A,b)
$GuassNaive: naive Guass elimination
X = GuassNaive(A,b):Guass elimination without pivoting.
input:
A = coefficient matrix
b = right hand side vector
Output:
[m,n]=size(A);
if m~=n, error('Matrix A must be square'); end
nb = n+l;
Aug = [A b];
% forward elimination
for k = 1:n-1
for i = k+1l:n
factor = Aug(i,k)/Aug(k,k);
Aug(i,k:nb)=Aug(i,k:nb)-factor*Aug(k,k:nb);
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end

end

% back substitution

X = zeros(n,1l);

x(n)=Aug(n,nb)/Aug(n,n);

for i = n-1:-1:1
x(i)=(Aug(i,nb)-Aug(i,i+l:n)*x(i+l:n))/Aug(i,i);

end

Notice that the coefficient of matrix A and the right-hand-side vector b are combined
in the augmented matrix Aug. Thus, the operations are performed on Aug rather than
separately on A and b. Two nested loops provide a concise representation of the
forward elimination step. The outer loop moves down the matrix from one pivot row
to the next. The inner loop moves below the below the pivot row to each of the
subsequent rows where elimination is to take place. Finally, the actual elimination is
represented by a single line that takes advantage of MATLAB's ability to perform

matrix operations.



Solution:

Go to command window and do the following operations
>> A=[3 -0.1 -0.2; 0.1 7 -0.3; 0.3 -0.2 10]

3.0000 -0.1000 -0.2000
0.1000 7.0000 -0.3000
0.3000 -0.2000 10.0000

>> b =[7.85 -19.3 71.4]"
b =
7.8500
-19.3000
71.4000
>> GuassNaive(A,b)
ans =
3.0000
-2.5000
7.0000

Exercise no. 2 Guass Jordan Method

This method is a modification of the Gaussian elimination method. The Gauss-
Jordan method, however, is inefficient for practical calculation, but is often
useful for theoretical purposes. The basis of this method is to convert the given
matrix into diagonal form. The forward elimination of the Gauss-Jordan method
is identical to that of the Gaussian elimination method. However, Gauss-Jordan
elimination uses backward elimination rather than backward substitution. In
the Gauss-Jordan method the forward elimination and backward elimination
need not be separated. This is possible because a pivot element can be used to
eliminate the coefficients not only below but also above at the same time. If this
approach is taken, the form of the coefficients matrix becomes diagonal when
elimination by the last pivot is completed. The Gauss-Jordan method simply
vields a transformation of the augmented matrix of the form

[A]b] — [T|c],

where I is the identity matrix and c is the column matrix, which represents the

possible solution of the given linear syvstem.

Solve the following linear systemn using the Gauss-Jordan method



r + 2;!."_) = 3
—Iy - 23 -3
=3y — dxg 4+ x3 = -4

Solution. Write the given system in augmented matriz form

1 2 0 3

-1 0 -2 -5

-3 =5 1 -4
The first elimination step is to eliminate the elements azy = —1 and az; = —3
by subtracting the multiples mz, = —1 and m3) = —3 of row 1 from rows 2 and

3, respectively, which gives

12 0: 3
02 -2 : =2
01 1: 5

The second row is now divided by 2 to give

12 0 : 3
01 -1 : =1
01 1: 5

The second elimination step is to eliminate the elements in positions aglz) =2
and azs = 1 by subtracting the multiples mys = 2 and maz = 1 of row 2 from
rows I and 3, respectively, which gives

10 2: 5
01 -1 ¢ =1
00 2: 6

The third row is now divided by 2 to give

10 2: 5
01 -1 : -1
oo 1: 3
The third elimination step is to eliminate the elements in positions ag‘) = -1

and ayz = 2 by subtracting the multiples maz = —1 and my3 = 2 of row & from
rows 2 and 1, respectively, which gives

1 00 : -1
010 : 2
001 : 3



Obviously, the original set of equations has been transformed to a diagonal form.
Now expressing the set in algebraic form yields

n = -
T2
r3 =

|
o b e

which is the reguired solution of the given system.
Now we can get the above results by creating a function file and executing it in

command window of MATLAB. To do so follow the MATLAB Code given below

function sol = GaussJ(Ab)
[m,n]=size(Ab);
for i = 1:m
Ab(i,:)=Ab(i,:)/Ab(i,1);
for j = 1:m
if j == i;
continue; end
Ab(Jj,:)=Ab(j,:)-Ab(j,1i)*Ab(1i,:);
end;
end;
sol = Ab

Save the above file in the name of GaussJ .m and follow the procedure given below:

>> Ab=[1 2 0 3; -1 0 -2 -5; -3 -5 1 -4]

Ab =
1 2 0 3
-1 0 -2 -5
-3 -5 1 -4

>> GaussJ(Ab)

sol =
1 0 0 -1
0 1 0 2
0 0 1 3
ans =
1 0 0 -1
0 1 0 2



