
Lesson 13 Numerical Methods 

Exercise 1 Solving a non linear algebraic equation (Transcendental equations)

1. Solve the following transcendental equation:

sin x = ex – 5 

Solution 

Step 1: Write the equation in standard form

sin(x) – ex + 5 = 0

i.e, f(x) = sin(x) – ex + 5

Step 2: Write the function that computes f(x)

function f=transf(x);
%TRANSF: computes f(x) = sin(x)-exp(x)+5.
%call syntax: ftransf(x);
f=sin(x)-exp(x)+5;

 

save the above function file as transf.m

Step 3: Use fzero to find the solution in the command window 

>> x=fzero('transf',1) `%initial guess x0=1

x =

    !! 1.7878

2. Solve the same problem exercise 1 as mentioned above using MATLAB and show the number 

of iterations required to find the roots of the equation.
>> x=fzero('transf',1,optimset('Display','iter'))%inital gues x0=1

 

Search for an interval around 1 containing a sign change:

 Func-count    a          f(a)             b          f(b)        Procedure

    1        1           3.12319          1          3.12319   initial interval

    3        0.971716       3.18338       1.02828       3.06015   search

    5            0.96        3.2075          1.04       3.03319   search

    7        0.943431        3.2408       1.05657       2.99419   search

    9            0.92       3.28631          1.08       2.93728   search

   11        0.886863       3.34759       1.11314        2.8532   search

   13            0.84       3.42828          1.16       2.72687   search

   15        0.773726       3.53098       1.22627       2.53273   search

   17            0.68       3.65492          1.32       2.22529   search

   19        0.547452       3.79167       1.45255       1.71902   search

   21            0.36       3.91894          1.64      0.842437   search

   23       0.0949033       3.99521        1.9051     -0.775417   search

 



Search for a zero in the interval [0.0949033, 1.9051]:

Func-count    x          f(x)             Procedure

   23          1.9051     -0.775417        initial

   24          1.9051     -0.775417        interpolation

   25         1.77601     0.0727553        interpolation

   26         1.78709    0.00467758        interpolation

   27         1.78784  -2.94363e-06        interpolation

   28         1.78784   1.24935e-09        interpolation

   29         1.78784   1.77636e-15        interpolation

   30         1.78784   1.77636e-15        interpolation

 

Zero found in the interval [0.0949033, 1.9051]

x =

    1.7878



LESSON 14   Curve Fitting 

Exercise 1: Polynomial curve fitting – Linear fit

  Curve fitting is a technique of finding an algebraic relationship that “best”(in a least 

square sense) fits a given set of data. MATLAB helps us to explore the best  possible fit. MATLAB 

includes Basic Fitting in its figure window’s Tools menu that lets you fit a polynomial curve (up to 

the tenth order) to your data on the fly. It also gives you options of displaying the residual at the data 

points and computing and computing the norms of the residuals. 

 

Let us say that we have the following data for x and y and we want to get  the best linear 

(straight-line) fit through this data.

x 5 10 20 50 100
y 15 33 53 140 301

Step 1: Plot raw data: Enter the data and plot it as a scatter plot using some marker, say circles.

 >> x = [5 10 20 50 100];     % x-data

>> y = [15 33 53 140 301];   % y - data

>> plot(x,y,'o');            % plot x vs y using circles

>> xlabel('x');

>> ylabel('y');

Step 2: Use built-in Basic fitting from the pull-down menu as shown in the below figure:

             A separate window appears with Basic Fitting options.

Step 3: Fit a linear cure and display the equation: Check the boxes for linear and show equations     
 from the Basic Fitting window options. The best-fitted line as well as its equation appears in 
 the figure window.



Exercise 2: Computing different fits - Quadratic and Cubic

Step 1: Plot raw data: Use the x – y data 

x 1 2 3 4 5
y 1.8 5.1 8.9 14.1 19.8

So, go ahead and plot the raw data as shown below:

>> x=[1 2 3 4 5];  % x-data
>> y=[1.8 5.1 8.9 14.1 19.8]; % y-data
>> plot(x,y,'o');
>> xlabel('x');
>> ylabel('y');



Step 2:   Use Basic Fitting to do quadratic and a cubic fit: Go to figure window click on Tools and 
select Basic Fitting from the pull-down menu (as in the above example 1). In the Basic Fitting 
window, check quadratic and cubic boxes. In addition, check the box for the show equation:

Lesson 15 Numerical Integration 

1. Trapezoidal rule 
2. Simpson’s Rule 

Exercise 1: Trapezoidal rule

The MATLAB function trapz(x,y,n) where y is the integral with respect to x, approximates the 
integral of a function y = f (x) using the trapezoidal rule, and n (optional) performs integration along 
dimension n.

Use the MATLAB function trapz(x,y) to approximate the value of the integral

and by comparison with the exact value, compute the percent error when n = 5 and n = 10

Solution:

The exact value is found from

For the approximation using the trapezoidal rule, we let x5 represent the row vector with n = 5, and x10 

the vector with n = 10, that is, ∆x = 1⁄5 and ∆x = 1⁄10 respectively. The corre- sponding values of y are 

denoted as y5 and y10 , and the areas under the curve as area5 and area10 respectively. We use the 

following MATLAB code in command window.



>> x5=linspace(1,2,5); 
>> x10=linspace(1,2,10); 
>> y5=1./x5; y10=1./x10; 
>> area5=trapz(x5,y5); 
>> area10=trapz(x10,y10)
 
 area5 = 0.6970
    area10 = 0.6939

Exercise 2: Use the trapezoidal approximation to compute the values of the following definite 
integral and compare your results with the analytical values. Verify your answers with the MATLAB 
trapz(x,y,n) function.

a. The exact value is

! For the trapezoidal rule approximation we have

a. >> x=linspace(0,2,4); 
  >> y=x; area=trapz(x,y)

     area 

   = 2



b.  >> x=linspace(0,2,4); 
      >> y=x.^3; 
      >> area=trapz(x,y)

  
  area =

    4.4444

2. Simpsons rule 

Exercise 1: Using Simpson’s rule with 4 subdivisions ( n = 4 ) , compute the approximate value of 

We can find the analytical value with MATLAB’s int(f,a,b) function where f is a symbolic expression, 
and a and b are the lower and upper limits of integration respectively. For this example,

>> syms x 
>> Area=int(1/x,1,2)
 
Area =
 
log(2)

Exercise 2:  Use Simpson’s rule to approximate the following definite integral using MATLAB

Solution:

>> syms x;

>> y=int(exp(x.^2),0,2) % Define symbolic variable x and integrate
y =
 
-(pi^(1/2)*erf(2*i)*i)/2

>> pretty(y)

      1/2
    pi    erf(2 i) i
  - ----------------
           2
or 

>> syms x;
>> area=int(exp(x^2),0,2)
 
area =
 
-(pi^(1/2)*erf(2*i)*i)/2

>> pretty(area)

      1/2
    pi    erf(2 i) i
  - ----------------
           2


