
Lesson 13 Numerical Methods

Exercise 1 Solving a non linear algebraic equation (Transcendental equations)

1. Solve the following transcendental equation:

sin x = ex – 5

Solution

Step 1: Write the equation in standard form

sin(x) – ex + 5 = 0

i.e, f(x) = sin(x) – ex + 5

Step 2: Write the function that computes f(x)

function f=transf(x);
%TRANSF: computes f(x) = sin(x)-exp(x)+5.
%call syntax: ftransf(x);
f=sin(x)-exp(x)+5;

save the above function file as transf.m

Step 3: Use fzero to find the solution in the command window

>> x=fzero('transf',1) `%initial guess x0=1

x =

 !! 1.7878

2. Solve the same problem exercise 1 as mentioned above using MATLAB and show the number

of iterations required to find the roots of the equation.
>> x=fzero('transf',1,optimset('Display','iter'))%inital gues x0=1

Search for an interval around 1 containing a sign change:

 Func-count a f(a) b f(b) Procedure

 1 1 3.12319 1 3.12319 initial interval

 3 0.971716 3.18338 1.02828 3.06015 search

 5 0.96 3.2075 1.04 3.03319 search

 7 0.943431 3.2408 1.05657 2.99419 search

 9 0.92 3.28631 1.08 2.93728 search

 11 0.886863 3.34759 1.11314 2.8532 search

 13 0.84 3.42828 1.16 2.72687 search

 15 0.773726 3.53098 1.22627 2.53273 search

 17 0.68 3.65492 1.32 2.22529 search

 19 0.547452 3.79167 1.45255 1.71902 search

 21 0.36 3.91894 1.64 0.842437 search

 23 0.0949033 3.99521 1.9051 -0.775417 search

Search for a zero in the interval [0.0949033, 1.9051]:

Func-count x f(x) Procedure

 23 1.9051 -0.775417 initial

 24 1.9051 -0.775417 interpolation

 25 1.77601 0.0727553 interpolation

 26 1.78709 0.00467758 interpolation

 27 1.78784 -2.94363e-06 interpolation

 28 1.78784 1.24935e-09 interpolation

 29 1.78784 1.77636e-15 interpolation

 30 1.78784 1.77636e-15 interpolation

Zero found in the interval [0.0949033, 1.9051]

x =

 1.7878

LESSON 14 Curve Fitting

Exercise 1: Polynomial curve fitting – Linear fit

 Curve fitting is a technique of finding an algebraic relationship that “best”(in a least

square sense) fits a given set of data. MATLAB helps us to explore the best possible fit. MATLAB

includes Basic Fitting in its figure window’s Tools menu that lets you fit a polynomial curve (up to

the tenth order) to your data on the fly. It also gives you options of displaying the residual at the data

points and computing and computing the norms of the residuals.

Let us say that we have the following data for x and y and we want to get the best linear

(straight-line) fit through this data.

x 5 10 20 50 100
y 15 33 53 140 301

Step 1: Plot raw data: Enter the data and plot it as a scatter plot using some marker, say circles.

 >> x = [5 10 20 50 100]; % x-data

>> y = [15 33 53 140 301]; % y - data

>> plot(x,y,'o'); % plot x vs y using circles

>> xlabel('x');

>> ylabel('y');

Step 2: Use built-in Basic fitting from the pull-down menu as shown in the below figure:

 A separate window appears with Basic Fitting options.

Step 3: Fit a linear cure and display the equation: Check the boxes for linear and show equations
 from the Basic Fitting window options. The best-fitted line as well as its equation appears in
 the figure window.

Exercise 2: Computing different fits - Quadratic and Cubic

Step 1: Plot raw data: Use the x – y data

x 1 2 3 4 5
y 1.8 5.1 8.9 14.1 19.8

So, go ahead and plot the raw data as shown below:

>> x=[1 2 3 4 5]; % x-data
>> y=[1.8 5.1 8.9 14.1 19.8]; % y-data
>> plot(x,y,'o');
>> xlabel('x');
>> ylabel('y');

Step 2: Use Basic Fitting to do quadratic and a cubic fit: Go to figure window click on Tools and
select Basic Fitting from the pull-down menu (as in the above example 1). In the Basic Fitting
window, check quadratic and cubic boxes. In addition, check the box for the show equation:

Lesson 15 Numerical Integration

1. Trapezoidal rule
2. Simpson’s Rule

Exercise 1: Trapezoidal rule

The MATLAB function trapz(x,y,n) where y is the integral with respect to x, approximates the
integral of a function y = f (x) using the trapezoidal rule, and n (optional) performs integration along
dimension n.

Use the MATLAB function trapz(x,y) to approximate the value of the integral

and by comparison with the exact value, compute the percent error when n = 5 and n = 10

Solution:

The exact value is found from

For the approximation using the trapezoidal rule, we let x5 represent the row vector with n = 5, and x10

the vector with n = 10, that is, ∆x = 1⁄5 and ∆x = 1⁄10 respectively. The corre- sponding values of y are

denoted as y5 and y10 , and the areas under the curve as area5 and area10 respectively. We use the

following MATLAB code in command window.

>> x5=linspace(1,2,5);
>> x10=linspace(1,2,10);
>> y5=1./x5; y10=1./x10;
>> area5=trapz(x5,y5);
>> area10=trapz(x10,y10)

 area5 = 0.6970
 area10 = 0.6939

Exercise 2: Use the trapezoidal approximation to compute the values of the following definite
integral and compare your results with the analytical values. Verify your answers with the MATLAB
trapz(x,y,n) function.

a. The exact value is

! For the trapezoidal rule approximation we have

a. >> x=linspace(0,2,4);
 >> y=x; area=trapz(x,y)

 area

 = 2

b. >> x=linspace(0,2,4);
 >> y=x.^3;
 >> area=trapz(x,y)

 area =

 4.4444

2. Simpsons rule

Exercise 1: Using Simpson’s rule with 4 subdivisions (n = 4) , compute the approximate value of

We can find the analytical value with MATLAB’s int(f,a,b) function where f is a symbolic expression,
and a and b are the lower and upper limits of integration respectively. For this example,

>> syms x
>> Area=int(1/x,1,2)

Area =

log(2)

Exercise 2: Use Simpson’s rule to approximate the following definite integral using MATLAB

Solution:

>> syms x;

>> y=int(exp(x.^2),0,2) % Define symbolic variable x and integrate
y =

-(pi^(1/2)*erf(2*i)*i)/2

>> pretty(y)

 1/2
 pi erf(2 i) i
 - ----------------
 2
or

>> syms x;
>> area=int(exp(x^2),0,2)

area =

-(pi^(1/2)*erf(2*i)*i)/2

>> pretty(area)

 1/2
 pi erf(2 i) i
 - ----------------
 2

