#### CH0302 Process Instrumentation

# Lecture 7 — Temperature Measurements



Department of Chemical Engineering School of Bioengineering SRM University Kattankulathur 603203

# Introduction – Temperature Measurements Instruments

- Thermal Expansion
- Thermoelectric
- Resistance
- Radiation

# Introduction – Temperature Measurements Instruments

- Thermal Expansion
- Thermoelectric
- Resistance
- Radiation

#### Scientists Contributed to the physics of thermoelectricity



|  | Thomas Johann Seebeck                 |
|--|---------------------------------------|
|  |                                       |
|  |                                       |
|  |                                       |
|  | Discovering the thermoelectric effect |

#### Scientists Contributed to the physics of thermoelectricity



|  | Jean Charles Athanase Peltier         |
|--|---------------------------------------|
|  | 22 February 1785                      |
|  | 27 October 1845 Paris, France         |
|  | Physicist                             |
|  | Discovering the thermoelectric effect |

### Scientists Contributed to the physics of thermoelectricity



#### Seebeck Effect



#### Thomas Johann Seebeck

- Current flows in the thermocouple circuit when the temperatures at the junction are different.
- That is a thermal electro motive force (emf) is generated in the circuit which causes the current flow

#### Peltier Effect



#### Jean Charles Athanase Peltier

- Related the absorption and evolution of heat at the junctions of a thermocouple to the current flow in the circuit.
- That is a the heat is evolved at the reference junction and and absorbed at the measuring junction is in proportion to the flow of current.

#### Peltier Effect



#### Sir William Thomson

- Predicted a relation between the emf generated in a single homogeneous wire and the temperature difference between the ends of the wire.
- That is the emf is propotional to the temperature and the temperature difference in the wires and differs for different metals

#### Thermocouple circuit



- Thermocouple composed of two dissimilar metals A and B.
- The left hand side junction is the point of measurement (Measurement Junction)
- The right hand side junction is the (Reference Junction). This junction is frequently maintained at either 0°C (32°F) or 20°C (68°F)

# Laws of thermocouple

- Law of homogenous circuits
- Law of intermediate metals
- Law of intermediate temperatures

#### Laws of homogenous circuits



- An electric current cannot be sustained in a circuit of a single homogeneous metal, however varying in section, by the application of heat alone.
- From this law, it is noted that the thermal emf developed in the thermocouple is independent of temperature gradient and its distribution along the wires when measuring junction temperature T is different from the reference junction T<sub>R</sub>.
- Therefore the only temperatures related to thermal emf are the measuring junction temperature and the reference junction temperature and all other intermediate temperature are of no consequence.

#### Laws of intermediate metals



- The algebraic sum of thermal emf in a circuit composed of any number of dissimilar metals is zero, if all the circuits are at uniform temperature.
- By combining the law of homogeneous circuits with this law it is possible to insert a measuring device and its connecting wires into the thermocouple circuit at any point without altering the emf, provided that all intermediate junction are at the same temerature T<sub>i</sub> as shown in the figure.

#### Laws of intermediate temperatures



- If identical thermocouples measure the temperature difference between  $T_1$  and  $T_2$ , and also between  $T_2$  and  $T_3$ , then the sum of the corresponding voltages  $V_{1-2} + V_{2-3}$  must equal the voltage  $V_{1-3}$  generated by an identical thermocouple measuring the temperature difference between  $T_1$  and  $T_3$ 

$$V_{1-3} = V_{1-2} + V_{2-3}$$

### Desirable or good Characteristics of thermocouple

- Relatively large thermal emf
- Precision/Accuracy of calibration
- Resistance to corrosion and oxidation
- Linear relation of emf to temperature

Relatively large thermal emf

Thermocouple should have relatively large thermal emf for a given temperature

Precision/Accuracy of calibration

Must be capable of calibration to a standard emf temperature relationship and it should maintain without drift

Resistance to corrosion and oxidation

Should have high resistance to corrosion in order to have a long life since frequent replacement greatly increases the cost

Linear relationship

It is desirable to have a linear relationship between thermal emf and temperature inorder to reduce the problems associated with reference junction temperature

#### Five commonly used industrial thermocouples

- 1. Copper Constantan (55% Cu and 45% Ni)
- 2. Iron Constantan
- 3. Chromel (90% Ni and 10% Cr) Alumel (95% Nickel, 2% Aluminium, 2% Manganese and 1% Silicon)
- 4. Platinum 13% Rhodium
- 5. Platinum 10% Rhodium





#### American Wire Gauge Standard

| AWG        | Diameter |         | Turns of wire,<br>no insulation |          | Area    |       |
|------------|----------|---------|---------------------------------|----------|---------|-------|
| AVVG       | (in)     | (mm)    | (per in)                        | (per cm) | (kcmil) | (mm²) |
| 0000 (4/0) | 0.4600*  | 11.684* | 2.17                            | 0.856    | 212     | 107   |
| 000 (3/0)  | 0.4096   | 10.405  | 2.44                            | 0.961    | 168     | 85.0  |
| 00 (2/0)   | 0.3648   | 9.266   | 2.74                            | 1.08     | 133     | 67.4  |
| 0 (1/0)    | 0.3249   | 8.251   | 3.08                            | 1.21     | 106     | 53.5  |
| 1          | 0.2893   | 7.348   | 3.46                            | 1.36     | 83.7    | 42.4  |
| 2          | 0.2576   | 6.544   | 3.88                            | 1.53     | 66.4    | 33.6  |
| 3          | 0.2294   | 5.827   | 4.36                            | 1.72     | 52.6    | 26.7  |
| 4          | 0.2043   | 5.189   | 4.89                            | 1.93     | 41.7    | 21.2  |
| 5          | 0.1819   | 4.621   | 5.50                            | 2.16     | 33.1    | 16.8  |
| 6          | 0.1620   | 4.115   | 6.17                            | 2.43     | 26.3    | 13.3  |
| 7          | 0.1443   | 3.665   | 6.93                            | 2.73     | 20.8    | 10.5  |
| 8          | 0.1285   | 3.264   | 7.78                            | 3.06     | 16.5    | 8.37  |
| 9          | 0.1144   | 2.906   | 8.74                            | 3.44     | 13.1    | 6.63  |
| 10         | 0.1019   | 2.588   | 9.81                            | 3.86     | 10.4    | 5.26  |



http://www.omega.com/temperature/pdf/tc\_colorcodes.pdf

#### Thermocouple and Junction Assembly







# Industrial Thermocouple - Junction



- (a) Exposed Junction
- (b) Unground junction
- (c) Ground Junction

# Thermocouple – Thermal Well Installation



Open end with ground Junction



Open end with screw flange ungrounded junction

# Thermocouple – Thermal Well



Open end with flange with exposed junction



Open end with 1<sup>o</sup> and 2<sup>o</sup> grounded junctions

### Open end with ground Junction



### Open end with screw flange ungrounded junction



### Open end with flange with exposed junction





Terminal block connected to head

- Over 2000 <sup>o</sup>F where corrosion is expected, primary and secondary thermo wells are employed
- Primary well serves as a protective tube
- Secondary well has three purposes:
  - (I) acts as a cover to primary well
  - (ii) prevents sagging of assembly at high temperatures
- and (iii) prevents gas leakage

Insulated wall

Flange

Thermocouple conductors

Open end with 1º and 2º grounded junctions

Mechanical properties that must be considered in the selection of thermal well

- Resistance to corrosion and oxidation
- Resistance to mechanical shock
- Resistance to thermal shock
- Resistance to gas leakage
- Overall good mechanical strength

#### References

- 1. Donald P. Eckman, (2004) Industrial Instrumentation, CBS Publishers, Pp. 1-27.
- 2. https://www.mne.psu.edu/me345/Lectures/Temperature\_measurement.pdf
- 3. www.wikipedia.com

# Thank You