CH0302 Process Instrumentation

Lecture 6 – Temperature Measurements

Department of Chemical Engineering School of Bioengineering SRM University Kattankulathur 603203

Introduction – Temperature Measurements

- Thermal Expansion
- Thermoelectric
- Resistance
- Radiation

Introduction – Temperature Measurements

Temperature

Temperature scale

Temperature Measurement instruments

Introduction – Temperature Measurements

Temperature

Temperature scale

Temperature Measurement instruments

Introduction – Temperature Measurements Instruments

- Thermal Expansion
- Thermoelectric
- Resistance
- Radiation

- Constant Volume gas thermometers
- Mercury in class thermometers
- Bi metal thermometers
- Pressure spring thermometers

Utilizes thermal expansion coefficient of substance

The temperature range between -459.7 °F and 212 °F i.e. -273.2 °C and 100 °C

Introduction – Thermoelectric type

Thermocouples

- Copper Constantan
- Iron Constantan
- Chromel Constantan
- Platinum Rhodium

Uses the e.m.f. generated in a wire the temperature difference between the ends of the wire

The temperature range between $-300\,^{\circ}\text{F}$ and $3000\,^{\circ}\text{F}$ i.e. $-184.4\,^{\circ}\text{C}$ and $1648.8\,^{\circ}\text{C}$

Introduction – Resistance type

Resistance Thermometers

- Simple wheat stone bridge circuit
- Double slide wire bridge circuit
- Capacitance bridge
- Null bridge and deflection type

Change in electrical resistance is used of a substance with temperature

The temperature range between i.e. - 190 °C and 660 °C

Introduction – Radiation type

Radiation Thermometers

- Lens type
- Mirror type
- Photo electric type
- Optical pyrometers

Law of radiation i.e. Radiation energy of black body

The temperature range between -200 °F and 2000 °F i.e. -93 °C and 1100 °C

- Constant Volume gas thermometers
- Mercury in class thermometers
- Bi metal thermometers
- Pressure spring thermometers

Constant Volume gas thermometers

- Widely used in laboratories for comparison calibration of other thermometers.
- the gas is maintained at constant volume and by ideal gas law, the pressure is directly proportional to the temperature.
- the pressure reading of the thermometer can be related to ideal thermodynamic temperature scale.
- the gases used in this type thermometer are
- helium, hydrogen and nitrogen.

Mercury-in-glass thermometer

Ordinary Mercury-in-glass thermometer

Thermal Expansion type – A typical Industrial thermometer

Bimetallic thermometer (Constructional Features)

Parts	Function	
Bulb	It is the liquid (Hg) reservoir. The liquid in this reservoir expands or contracts in volume	
Thermal well	Thermal well is provided for the purpose of preventing breakage and providing a sealing means at the point of installation	
Metal frame	Metal frame provides the complete protection for the thermometer	
Glass capillary or Envelope	Glass tube containing a tiny capillary connected to the bulb. The change in volume of the liquid in the bulb causes liquid to expand or contract in the capillary	
Scale	Graduated region to read degrees of temperature Metal scale provides the complete protection for the thermometer	
Expansion chamber or reservoir	To protect the mercury when it is subjected to over range of temperatures.	

Working Principle

- As the heat is transferred through the metal stem and into the mercury,
 the mercury expands pushing the column higher in the capillary.
- That is, first the glass envelope of the thermometer expands and contracts with temperature changes. This changes the volume of the mercury inside the thermometer.
- Second, the coefficient of cubical expansion for mercury varies with temperature.
- Third, As the mercury expands past the highest calibrated point, it slowly
 fills in a small reservoir at the top where dry nitrogen is filled in to elevate
 the boiling point of the mercury when the thermometer is used at higher
 temperature.

Note: Boiling point of commonly used thermometer is about 357°C.

- The time constant of the industrial thermometer response will range from
 0.01 min to 1 min depending upon the conditions of use.
- Ethyl alcohol, pentane and toluene are some of the other medias as mercury used in thermometers to measure the temperature
- The industrial applications :
 - i) Cooking kettles
 - (ii) Molten metals
 - (iii) Steam lines
 - (iv) Air ducts
 - (v) Pipe lines for fluid flow and so on

Note: The accuracy of the industrial thermometer, when properly installed and used, is about ±1 percent

Bimetallic Thermometer

Front cut sectional view

Bimetallic strip

- A bimetal is composed of two strips of metal welded or fused together,
 each strip is made from metal having a different coefficient of thermal expansion.
- Invar is universally employed as the low expansion metal
- Brass is widely used as the high expansion metal
- Invar is an iron-nickel alloy containing about 36% of nickel

Various Values of Thermal coefficient (α)	10 ⁻⁶ /°C
Copper	17
Brass	19
Invar	0.9
Steel	12

Parts	Functions
Metal Case/ Frame with glass	Provides the complete protection for the thermometer from temperature, humidity and vibrations.
Glass Dial	Provides a controlled interface between the scale and metal frame
Pointer	Deflects and indicates the temperature scale.
Scale	Graduated region to read degrees of temperature usually in the eccentric style.
Stem	Connects the bimetal and the pointer and serves as the manipulating element
Helical Coil	Primary element that utilizes the heat energy to expands and contract
Thermal Well	Thermal well is provided for the purpose of preventing corrosion, breakage and providing a sealing means at the point of installation

Working Principle

- In industrial bimetallic thermometer, bimetal is wound in the form of a helix or spiral with one
 end fastened permanently to the outer casing and the other end is connected to the pointer.
- The pointer is attached to the upper end of the stem and rotates (or sweeps) over a circular dial to indicate the temperature.
- When the temperature surrounding the whole stem changes, the bimetal expands and rotates at its free end, thus turning inside the stem and the pointer to a new position on the dial.
- The thermal well made up of brass, steel or stainless steel may be used to protect the thermometer against corrosion and breakage

References

1. Donald P. Eckman, (2004) *Industrial Instrumentation*, CBS Publishers, Pp. 1-27.

Thank You