CH1019 Chemical Process Technology

Lecture 4a

Chapter 3 Fertilizer Industries

Balasubramanian S Assistant Professor (OG) Department of Chemical Engineering

Overview of topics

Chapter 3 FERTILIZER INDUSTRIES

1

2

3

- Nitrogen industries
- Phosphorous industries
- Potassium industries

Overview of topics

Chapter 3 FERTILIZER INDUSTRIES

1

2

3

- Nitrogen industries
- Phosphorous industries
- Potassium industries

Nitric acid is an acid which is completely miscible with water;

forms a constant boiling mixture at 120°C.

End uses of nitric acid

- Used in the manufacture of ammonium nitrate
- Used in the manufacture of explosives
- Used in the manufacture of adipic acid which is one of the precursors for plastics and fibers.
- Used in the manufacture of nitobenzene (aniline)
- Used in the manufacture of sodium, potassium, and calcium nitrates.

Methods of production

- Ammonia oxidation process
- NaNO₃ + H₂SO₄ process
- N₂ fixation from air
- Nitrogen fixation by nuclear fission

fragments

Ammonia oxidation process for the manufacture of nitric acid

The major steps involved are:

Oxidation of NH₃ to NO
Oxidation of NO to NO₂
Absorption of NO₂ in water
Concentration of HNO₃

Ammonia oxidation process for the manufacture of nitric acid

The major steps involved are:

Oxidation of NH₃ to NO
Oxidation of NO to NO₂
Absorption of NO₂ in water
Concentration of HNO₃

Ammonia oxidation process for the manufacture of nitric acid

The main reactions and side reactions involved are:

• Ammonia oxidation—major reactions $AH^{\circ} = -54.0$ Kcal (a) $NH_3 + 5/4 O_2 \rightleftharpoons NO + 3/4 H_2O(g);$ $AH^{\circ} = -27.2$ Kcal (b) $2NO_{\mathbf{r}} + O_2 \rightleftharpoons 2NO_2$; • Ammonia oxidation—side reactions $AH^{\circ} = -75.7$ Kcal (c) $NH_3 + 3/4O_2 \rightleftharpoons 1/2N_2 + 3/2H_2O(g);$ $\Delta H^{\circ} = -11$ Kcal (d) $NH_1 = 1/2N_2 + 3/2H_2$; (e) $NH_3 + O_2 \rightleftharpoons 1/2N_2O + 3/2H_2O(g)$ $AH^{\circ} = -107.9$ Kcal (f) NH₃ + $3/2NO \Rightarrow 5/4N_2 + 3/2H_2O(g)$; Nitrous oxide oxidation and absorption $AH^\circ = -27.2$ Kcal (g) $2NO + O_2 \rightleftharpoons 2NO_2$; (h) $3NO_2(g) + H_2O(1) \rightleftharpoons 2HNO_3(aq) + NO;$ $\Delta H^\circ = -32.2$ Kcal $\Delta H^{\circ} = -11.46$ Kcal (i) $2NO_2 \rightleftharpoons N_2O_4$; (j) $2NO_2 + H_2O \rightleftharpoons HNO_3(aq) + HNO_2$ (k) $2HNO_2 \rightleftharpoons H_2O + NO + NO_2$

Ammonia oxidation process for the manufacture of nitric acid

- Urea is a nitrogen compound with the largest production volume in the world
- Its utilization is increasing steadily, it being the preferred nitrogen fertilizer world wide.

End uses of urea:

- Used as solid fertilizer
- Used as liquid fertilizer
- Used in the manufacture of formaldehyde resin, melamine and adhesives.

Manufacture of Urea by ammonia decarbamate

decomposition:

Main steps involved:

 $\widehat{1}$ Formation of ammonium carbamate

(NH₄.COO.NH₂)

(2) Decomposition of ammonium carbamate into

Urea (NH₂.CO.NH₂)

③ Formation of biuret

- **Biuret** is a chemical compound with the chemical formula $C_2H_5N_3O_2$.
- It is also known as carbamylurea. It is the result of condensation of two molecules of urea and is an impurity in urea-based fertilizers.

- This white solid is soluble in hot water.

Sulfur Industries

References

- Dryden C. E, Outlines of Chemical technology for the 21st Century, 3rd edition, East-West Press (2004)
- 2. Austin G. T, *Shreve's Chemical Process Industries*, 5th edition, Mc Graw Hill International editions (1984)