CH1019 Chemical Process Technology

Lecture 4

Chapter 3 Fertilizer Industries

Balasubramanian S Assistant Professor (OG) Department of Chemical Engineering

Overview of topics

Chapter 3 FERTILIZER INDUSTRIES

1

2

3

- Nitrogen industries
- Phosphorous industries
- Potassium industries

Overview of topics

Chapter 3 FERTILIZER INDUSTRIES

1

2

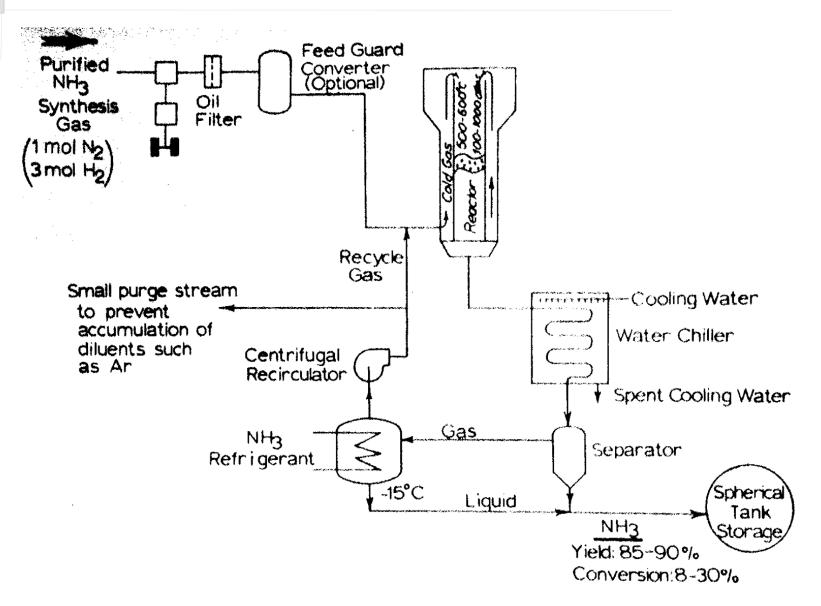
3

- Nitrogen industries
- Phosphorous industries
- Potassium industries

Fertilizer industries

- Fertilizer industry is the major component of the agricultural chemicals industry which in turn a major chemical engineering contribution to agro-business.
- Three major components are are necessary in fertilizers:
- (a) Nitrogen (N) required during early stages of plant growth to promote development of stems and leaves.
- (b) Phosphorus (P) which stimulates early growth and accelerates seeding or fruit formation in later stages of growth.
- (c) Potassium (K) essential to the development of the starches of potatoes and grains, the sugar of fruits and vegetables and the fibrous materials of the plant; an ample supply of potassium in the soil sometimes helps to prevent disease and to lessen the effects of excessive nitrogen application.

Fertilizer industries – Nitrogen


- Fertilizers supplying nitrogen are prepared in two basic types:
 - Mixed fertilizers these contain three principal elements (nitrogen, phosphorous, and potassium).
 These are generally granular solids.

ii. Chemical nitrogen fertilizers – chemical compounds used separately where direct application is required.

Fertilizer industries – Nitrogen

- Abundant nitrogen in the air is commercially fixed by reaction with low-cost hydrogen to give ammonia.
- This low –cost chemical is used for supplying:
- (a) Nitrogen fertilizers in the form of liquid and aqueous NH_3 solutions, ammonium salts and urea.
- (b) Nitric acid

- End uses of Ammonia
 - a) Direct application as fertilizer
 - b) In the urea
 - c) Ammonium phosphates
 - d) In the manufacture of nitric acid

Major steps involved in the manufacture of Ammonia (NH₃)

- Ammonia synthesis gas (3 moles of pure H2:1 moles of pure N2)
 is compressed to the operating pressure (100 1,000).
- Filter is used to remove the compression oil and additionally through a high temperature converter. (converts CO and CO₂ to CH₄ and removes traces of H₂O, H₂S and P).
- This is done by catalyst (Fe).

The reaction is

$$N_2 + 3H_2 \xrightarrow{Fe} 2NH_3 \Delta H = -22.0 \text{ Kcal}$$

Relatively cool gas (NH_3) is added along the outside of converter

tube walls to provide cooling.

- The porous iron catalyst is used in the converter and the temperature maintained at 500 – 550 ^oC.
- The ammonia conversion achieved is about 30% depending on the process conditions.

 The product ammonia is separated by separated by condensation with water cooling and then by refrigeration.

The unconverted N₂-H₂ mixture is recirculated to obtain 85 –
 90% of Ammonia yield.

Sulfur Industries

References

- Dryden C. E, Outlines of Chemical technology for the 21st Century, 3rd edition, East-West Press (2004)
- 2. Austin G. T, *Shreve's Chemical Process Industries*, 5th edition, Mc Graw Hill International editions (1984)