CH0401 Process Engineering Economics

Lecture 4 a

Balasubramanian S

Department of Chemical Engineering SRM University

Process Engineering Economics

Economic Analysis
2 Economic Balance in Cyclic Operation

Process Engineering Economics

Economic Analysis
Economic Balance in Cyclic Operation

Process Engineering Economics - Economic Analysis

Optimum proportions for a

cylindrical container

The surface area (A) of the cylinder (closed) is given as the sum of the area of Sides, top and bottom covers of the cylinder
i.e.

$$
\begin{aligned}
& A=(\pi \times D \times L)+\left(\frac{\pi}{4} D^{2}\right)+\left(\frac{\pi}{4} D^{2}\right) \\
& A=(\pi \times D \times L)+2\left(\frac{\pi}{4} D^{2}\right)
\end{aligned}
$$

Where $D=$ Vessel Diameter
$L=$ Vessel Length (or Height)

Process Engineering Economics - Economic Analysis

$$
A=(\pi \times D \times L)+2\left(\frac{\pi}{4} D^{2}\right)
$$

The above equation is minimized, simplified and solved to identify the minimum surface area required for cylinder with a given volume

$$
f(D \times L)=(D \times L)+\left(\frac{D^{2}}{2}\right)---(A)
$$

For a given volume (V), the diameter and length are related by

$$
V=\left(\frac{\pi}{4} \times D^{2} \times L\right)
$$

and

$$
L=\left(\frac{4 V}{\pi D^{2}}\right)------(B)
$$

Process Engineering Economics - Economic Analysis

Now the equation (A) becomes

$$
f(D)=\left(\frac{4 V}{\pi D}\right)+\left(\frac{D^{2}}{2}\right)
$$

Differentiating the above function and setting it to zero will give the optimum value for D

$$
\begin{aligned}
\left(-\frac{4 V}{\pi D^{2}}\right)+D & =0 \\
D & =\sqrt[3]{\frac{4 V}{\pi}}
\end{aligned}
$$

From equation (B), the corresponding length will be

$$
L=\sqrt[3]{\frac{4 V}{\pi}}
$$

Process Engineering Economics - Economic Analysis

Therefore, for a cylindrical container the minimum surface area to enclose a given volume is obtained when length is made equal to the diameter.

Process Engineering Economics - Economic Analysis

Example Problem: It is required to determine the optimum diameter to height ratio for a large oil storage vessel, so that the total cost is minimum.

Following data may be used for the calculation
$C_{s}=$ cost of sides per square meter
$C_{h}=$ cost of the head or top per square meter $=1.5 C_{s}$
$C_{b}=$ cost of the bottom per square meter $=0.75 C_{s}$

Process Engineering Economics - Cyclic Process

The surface area (A) of the cylinder (closed) is given as the sum of the area of Sides, top and bottom covers of the cylinder
i.e. $\quad A=(\pi \times D \times H)+\left(\frac{\pi}{4} D^{2}\right)+\left(\frac{\pi}{4} D^{2}\right)$

$$
\text { Let } \begin{aligned}
C_{T} & =\text { total cost of the vessel } \\
D & =\text { Vessel Diameter } \\
H & =\text { Vessel Height }
\end{aligned}
$$

then

$$
\begin{aligned}
C_{T} & =C_{s}(\pi \times D \times H)+C_{b}\left(\frac{\pi}{4} D^{2}\right)+C_{h}\left(\frac{\pi}{4} D^{2}\right)-----(1) \\
C_{T} & =C_{s}(\pi \times D \times H)+\left(C_{b}+C_{h}\right)\left(\frac{\pi}{4} D^{2}\right)------(2)
\end{aligned}
$$

Process Engineering Economics - Cyclic Process

$$
\begin{aligned}
& V=\left(\frac{\pi}{4} \times D^{2} \times H\right) \\
& H=\left(\frac{4 V}{\pi D^{2}}\right)
\end{aligned}
$$

Substituting for equation H in equation (2) shown in slide 09

$$
C_{T}=C_{s}\left(4 \frac{V}{D}\right)+\left(C_{b}+C_{h}\right)\left(\frac{\pi}{4} D^{2}\right)------(3)
$$

Differentiating with respect to design variable D and equating to zero

$$
\frac{d C_{T}}{d D}=\frac{-4 C_{s} V}{D^{2}}+\left(C_{b}+C_{h}\right) \frac{\pi D}{2}
$$

Process Engineering Economics - Cyclic Process

$$
D^{3}=\left[\frac{C_{s}}{C_{b}+C_{h}}\right] \times \frac{8 V}{\pi}------(4)
$$

Substituting for the volume in (4) in terms of D and H gives the following optimum D to H ratio for the minimum cost of the vessel.

$$
\frac{D}{H}=\frac{2 C_{s}}{C_{b}+C_{h}}------(5)
$$

Substituting for C_{b} and C_{h} in terms of C_{s} gives the optimum D to H

$$
\frac{D}{H}=\frac{2 C_{s}}{(0.75+1.5) C_{s}}
$$

Process Engineering Economics - References

- Herbert E. Schweyer. (1955) Process Engineering Economics, Mc Graw Hill
- Max S. Peters, Kaus D. Timmerhaus, Ronald E. West. (2004) Plant Design and Economics for Chemical Engineers, $5^{\text {th }}$ Ed., Mc Graw Hill
- Max Kurtz. (1920) Engineering Economics for Professional Engineers' Examinations, $3^{\text {rd }}$ Ed., Mc Graw Hill
- Frederic C. Jelen, James H. Black. (1985) Cost and Optimization Engineering, International Student edition, Mc Graw Hill
- Grant L. E, Grant Ireson. W, Leavenworth S. R. (1982) Principles of Engineering Economy, $7^{\text {th }}$ Ed., John Wiley and Sons.

