CH0401 Process Engineering Economics

Lecture 3d

Balasubramanian S

Department of Chemical Engineering SRM University

Process Engineering Economics

- **Economics of Selecting Alternatives**
- 2 Annual cost method
- 3 Present worth method
- 4 Replacement Rate-of-return method
- 5 Payout time method

Process Engineering Economics

Economics of Selecting Alternatives

- 2
- Annual cost method
- 3

Present worth method

4

Replacement – Rate-of-return method

5

Payout time method

Comparison of different interest rate percentages in annual cost method and present worth method

Problem 3. Using the same data from problem 1 with money worth 4%, Find out the relative annual costs and present worth's of two alternatives for 10 years service and how do these results compared with those obtained when money worth 10%?

Items	Plan A	Plan B
	(Plate and frame filter press)	(Continuous filter)
Cost of filter	\$10,000	\$30,000
Labor cost	\$18,600	\$11,000
Annual direct cost	8% of investment 10% of investment	
Money worth	4%	4%
Service life	10 years 10 years	
Salvage Value	\$600 \$1,000	

Annual Cost Method

Plan A		Plan B	
We know,		We know,	
$P = R\left(\frac{(1+i)^n - 1}{i(1+i)^n}\right)$	(1)	$P = R\left(\frac{(1+i)^n - 1}{i(1+i)^n}\right)$	(1)
$R = P\left(\frac{i(1+i)^n}{(1+i)^n - 1}\right)$	(2)	$R = P\left(\frac{i(1+i)^n}{(1+i)^n - 1}\right)$	(2)
$R = (P - L) \times \left(\frac{i(1+i)^n}{(1+i)^n - 1}\right) + L \times i$	(3)	$R = (P - L) \times \left(\frac{i(1+i)^n}{(1+i)^n - 1}\right) + L \times i$	(3)
now taking $i = 0.04$, $n = 10$ years, $L = 600 ,		now taking $\underline{i} = 0.04$, $n = 10$ years, $L = \$1,000$,	
<i>P</i> =\$10,000 from the problem statement		P=\$30,000 from the problem statement	
we have,		we have,	
$R = (10,000 - 600) \times \left(\frac{0.04(1+0.04)^{10}}{(1+0.04)^{10} - 1}\right) +$	·600×0.04	$R = (30,000 - 1,000) \times \left(\frac{0.04(1 + 0.04)^{10}}{(1 + 0.04)^{10} - 1}\right)$	+1000×0.04
$R = (9,400) \times \frac{0.0592}{0.4802} + 24 = 1159.02 + 24$		$R = (29,000) \times (0.1233) + 1000 \times 0.04 = 3615.7$ R = \$3616	
R = \$1183			

Annual Cost Method

Therefore, the total annual cost for the service are

Items	Plan A	Plan B	
items	(Plate and frame filter press)	(Continuous filter)	
A. Capital investment	\$10,000	\$30,000	
B. Capital recovery, R	\$ 1,183	\$ 3,616	
C. Labor cost	\$18,600	\$11,000	
D. Other direct costs	\$ 800	\$ 3,000	
Total annual costs (B+C+D)	\$20,583	\$17,616	

Comparison:

- If we use 10% interest rate potential saving in annual cost = \$2,170 i.e. (20,990 18,820) from annual cost method problem no 1.
- II. If we use 4% interest rate potential saving in annual cost = \$2,967 i.e (20,583 17,616)

Therefore, both the interest rates are in favor of Plan B. But it is seen that lower interest rate raises the difference in annual cost to (20,583 - 17,616) = \$2,967 in favor of plan B.

Present Worth Method

Plan A

We know,

$$P = R \left(\frac{(1+i)^n - 1}{i(1+i)^n} \right)$$
 (1)

Therefore, the present worth of annual cost, P is calculated as follows

$$P = 19,400 \times \left(\frac{(1+0.04)^{10}-1}{0.04(1+0.04)^{10}} \right)$$

$$P = 19,400 \times 8.1115 = 1,57,363.1$$

$$P = $1,57,363$$

Present worth of salvage is given by

$$F = P(1+i)^n$$

$$P = \frac{F}{(1+i)^n}$$

$$P = \frac{600}{(1+0.04)^{10}} = \frac{600}{1.4802} = 405.35$$

$$P = $405$$

Present Worth Method

Plan B

We know,

$$P = R \left(\frac{(1+i)^n - 1}{i(1+i)^n} \right)$$
 (1)

Therefore, the present worth of annual cost, P is calculated as follows

$$P = 14,000 \times \left(\frac{(1+0.04)^{10}-1}{0.04(1+0.04)^{10}} \right)$$

$$P = 14,000 \times (8.1115) = 1,13,560.81$$

$$P = $1,13,561$$

Present worth of salvage is given by

$$F = P(1+i)^n$$

$$P = \frac{F}{(1+i)^n}$$

$$P = \frac{1000}{(1+0.04)^{10}} = \frac{1000}{1.4802} = 675.58$$

$$P = $676$$

Present Worth Method

Particulars	Plan A	Plan B	
Farticulars	(Plate and frame filter press)	(Continuous filter)	
(i) Present worth of annual cost	\$157,363	\$113,561	
(ii) Present worth of salvage	\$ 405	\$ 676	
(iii) Present worth of initial cost	\$ 10,000	\$ 30,000	
Total present worth = $(i - \underline{i}\underline{i}) + (iii)$	\$166,958	\$142,885	

Comparison:

Interest rate	Plan A	Plan B
I. Equivalent present worth by 10 % (from problem 2)	\$119,213	\$86,030.0
II. Equivalent present worth by 4%	\$157,363	\$113,561

Form the above table it is seen that the difference in equivalent present worth is greater in favor of **Plan B** than for **Plan A** when money worth 4%. Hence **Plan B** is recommended

Process Engineering Economics – References

- Herbert E. Schweyer. (1955) *Process Engineering Economics*, Mc Graw Hill
- Max S. Peters, Kaus D. Timmerhaus, Ronald E. West. (2004) *Plant Design and Economics for Chemical Engineers*, 5th Ed., Mc Graw Hill
- Max Kurtz. (1920) Engineering Economics for Professional Engineers' Examinations, 3rd Ed., Mc Graw Hill
- Frederic C. Jelen, James H. Black. (1985) *Cost and Optimization Engineering*, International Student edition, Mc Graw Hill
- Grant L. E, Grant Ireson. W, Leavenworth S. R. (1982) *Principles of Engineering Economy*, 7th Ed., John Wiley and Sons.