CH0401 Process Engineering Economics

Lecture 3c

Balasubramanian S

Department of Chemical Engineering SRM University

Process Engineering Economics

- **Economics of Selecting Alternatives**
- 2 Annual cost method
- 3 Present worth method
- 4 Replacement Rate-of-return method
- 5 Payout time method

Process Engineering Economics

Economics of Selecting Alternatives

Annual cost method

Present worth method

Replacement – Rate-of-return method

Payout time method

Process Engineering Economics – Present Worth

Present Worth Method

Total present worth = (Present worth of annual cost – Present worth of salvage)
+ (Present worth of initial cost)

Problem 2. The same filter installation as in problem 1 will be considered with the same labor costs. Which plan has the lowest equivalent capital requirement? Take annual costs for plan A and B as \$19,400 and \$14,000 respectively, excluding capital recovery. The table given below shows the data taken from problem no. 1

Present Worth Method

Solution

Data

Items	Plan A	Plan B
	(Plate and frame filter press)	(Continuous filter)
Cost of filter	\$10,000	\$30,000
Labor cost	\$18,600	\$11,000
Annual direct cost	8% of investment	10% of investment
Money worth	10%	10%
Service life	10 years	10 years
Salvage Value	\$600	\$1,000
Annual costs, R	\$19,400	\$14,000

Process Engineering Economics – Present Worth

Solution

Plan A

We know,

$$P = R \left(\frac{(1+i)^n - 1}{i(1+i)^n} \right)$$
 (1)

Therefore, the present worth of annual cost, P is calculated as follows

$$P = 19,400 \times \left(\frac{(1+0.1)^{10}-1}{0.1(1+0.1)^{10}} \right)$$

$$P = 19,400 \times 6.145 = 1,19,213$$

$$P = $119,213$$

Present worth of salvage is given by

$$F = P(1+i)^n$$

$$P = \frac{F}{(1+i)^n}$$

$$P = \frac{600}{(1+0.1)^{10}} = \frac{600}{2.594} = 231.3$$

$$P = $231.3$$

Plan B

We know,

$$P = R\left(\frac{(1+i)^n - 1}{i(1+i)^n}\right) \tag{1}$$

Therefore, the present worth of annual cost, P is calculated as follows

$$P = 14,000 \times \left(\frac{(1+0.1)^{10}-1}{0.1(1+0.1)^{10}} \right)$$

$$P = 14,000 \times (6.144) = 86,030$$

$$P = $86,030$$

Present worth of salvage is given by

$$F = P(1+i)^n$$

$$P = \frac{F}{(1+i)^n}$$

$$P = \frac{1000}{(1+0.1)^{10}} = \frac{1000}{2.594} = 385.5$$

$$P = $385.5$$

Process Engineering Economics – Present Worth

Solution

Particulars	Plan A	Plan B
	(Plate and frame filter press)	(Continuous filter)
(i) Present worth of annual cost	\$119,213.0	\$86,030.0
(ii) Present worth of salvage	\$ 231.3	\$ 385.5
(iii) Present worth of initial cost	\$ 10,000.0	\$30,000.0
Total present worth = $(\underline{i} - ii) + (iii)$	\$128,982	\$115,645

Thus, it is seen that in comparing the two alternatives, the equivalent capital involved at the present time on an economic basis is \$13,337 less for plan B. Since Plan B is recommended.

Process Engineering Economics – References

- Herbert E. Schweyer. (1955) *Process Engineering Economics*, Mc Graw Hill
- Max S. Peters, Kaus D. Timmerhaus, Ronald E. West. (2004) *Plant Design and Economics for Chemical Engineers*, 5th Ed., Mc Graw Hill
- Max Kurtz. (1920) Engineering Economics for Professional Engineers' Examinations, 3rd Ed., Mc Graw Hill
- Frederic C. Jelen, James H. Black. (1985) *Cost and Optimization Engineering*, International Student edition, Mc Graw Hill
- Grant L. E, Grant Ireson. W, Leavenworth S. R. (1982) *Principles of Engineering Economy*, 7th Ed., John Wiley and Sons.