CH0401 Process Engineering Economics

Lecture 1d

Balasubramanian S

Department of Chemical Engineering SRM University

Process Engineering Economics

1) Introduction - Time Value of Money
2. Equivalence

3 Equations for economic studies
4) Amortization

5 Depreciation and Depletion

Process Engineering Economics

1) Introduction - Time Value of Money

4 Amortization

Depreciation and Depletion

Process Engineering Economics - Amortization

Amortization

Amortization is a generic term which describes the equivalence of a capital sum over a period of time, although in accounting it has more restricted meaning. In an industrial company it may be considered as a program or policy whereby the owners (stock-holders) of the company have their investment of depreciable capital protected partly against loss.

In general, Amortization (or amortization) is the process of decreasing, or accounting for, an amount over a period. Amortization of a loan with four different repayment mode is used as an example from the next slide onwards.

Process Engineering Economics - Amortization

Four plans for repayment of $\$ 5000$ in 5 years with interest at $\mathbf{8 \%}$

Plan 1: At end of each year pay 1000 Principal plus interest due

Plan 2: Pay interest due at end of each year and principal at end of 5 years

Plan 3: Pay in five equal end of year payments

Plan 4: Pay principal and interest in one payment at end of 5 years

Process Engineering Economics - Amortization

Four plans for repayment of $\$ 5000$ in 5 years with interest at $\mathbf{8 \%}$

(a)	(b)	(c)	(d)	(e)	(f)
	Amount Owed	Interest owed for	Total owed at	Principal	Total
	at beginning of	that year	end of year	Payment	End of year
Year	year	8\% x (b)	(b) + (c)		Payment
Plan 1: At end of each year pay \$ 1000 Principal plus interest due					
1	\$5,000	\$400.00	\$5,400.00	\$1,000	\$1,400.00
2	\$4,000	\$320.00	\$4,320.00	\$1,000	\$1,320.00
3	\$3,000	\$240.00	\$3,240.00	\$1,000	\$1,240.00
4	\$2,000	\$160.00	\$2,160.00	\$1,000	\$1,160.00
5	\$1,000	\$80.00	\$1,080.00	\$1,000	\$1,080.00
		\$1,200		\$5,000	\$6,200.00

Process Engineering Economics - Amortization

Four plans for repayment of $\$ 5000$ in 5 years with interest at $\mathbf{8 \%}$

(a)	(b)	(c)	(d)	(e)	(f)
	Amount Owed	Interest owed for	Total owed at	Principal	Total
	at beginning of	that year	end of year	Payment	End of year Payment
Year	year	8\% x (b)	(b) + (c)		
Plan 2: Pay intrest due at end of each year and principal at end of 5 years					
1	\$5,000	\$400.00	\$5,400.00	\$0	\$400.00
2	\$5,000	\$400.00	\$5,400.00	\$0	\$400.00
3	\$5,000	\$400.00	\$5,400.00	\$0	\$400.00
4	\$5,000	\$400.00	\$5,400.00	\$0	\$400.00
5	\$5,000	\$400.00	\$5,400.00	\$5,000	\$5,400.00
		\$2,000		\$5,000	\$7,000.00

Process Engineering Economics - Amortization

Four plans for repayment of $\$ 5000$ in 5 years with interest at $\mathbf{8 \%}$

\begin{tabular}{|c|c|c|c|c|c|}
\hline (a)

Year \& \begin{tabular}{l}
(b)

Amount Owed at beginning of year

 \&

(c)

Interest owed for that year 8\% x (b)

 \&

(d)

Total owed at end of year

$$
\text { (b) }+(\mathrm{c})
$$

 \&

(e)

Principal

Payment

 \&

(f)

Total End of year Payment
\end{tabular}

\hline \multicolumn{6}{|l|}{Plan 3: Pay in five equal end of year payments}

\hline 1 \& \$5,000 \& \$400.00 \& \$5,400.00 \& \$852 \& \$1,252.28

\hline 2 \& \$4,148 \& \$331.82 \& \$4,479.53 \& \$920 \& \$1,252.28

\hline 3 \& \$3,227 \& \$258.18 \& \$3,485.44 \& \$994 \& \$1,252.28

\hline 4 \& \$2,233 \& \$178.65 \& \$2,411.81 \& \$1,074 \& \$1,252.28

\hline 5 \& \$1,160 \& \$92.76 \& \$1,252.29 \& \$1,160 \& \$1,252.28

\hline \& \& \$1,261 \& \& \$5,000 \& \$6,261.40

\hline
\end{tabular}

Process Engineering Economics - Amortization

Four plans for repayment of $\$ 5000$ in 5 years with interest at $\mathbf{8 \%}$

(a)	(b)	(c)	(d)	(e)	(f)
	Amount Owed	Interest owed for	Total owed at	Principal	Total
	at beginning of	that year	end of year	Payment	End of year
Year	year	8\% x (b)	(b) + (c)		Payment
Plan 4: Pay principal and interest in one payment at end of 5 years					
1	\$5,000	\$400.00	\$5,400.00	\$0	\$0
2	\$5,400.00	\$432.00	\$5,832.00	\$0	\$0
3	\$5,832.00	\$466.56	\$6,298.56	\$0	\$0
4	\$6,298.56	\$503.88	\$6,802.44	\$0	\$0
5	\$6,802.44	\$544.20	\$7,346.64	\$5,000	\$7,347
		\$2,347		\$5,000	\$7,346.64

Process Engineering Economics

1) Introduction - Time Value of Money
2. Equivalence

3 Equations for economic studies
4. Amortization

5 Depreciation and Depletion

Process Engineering Economics

1) Introduction - Time Value of Money

4 Amortization

Equivalence

Equations for economic studies

Depreciation and Depletion

Process Engineering Economics

1) Introduction - Time Value of Money

Equations for economic studies
Amortization
5 Depreciation and Depletion

Process Engineering Economics - Depreciation

Depreciation

Depreciation has many meanings, but only two are discussed in our syllabus loss of value of capital with the time when equipment wears out or becomes obsolete. the systematic allocation of costs of an asset that produces an income from operations.

In short, depreciation may be considered as a cost for protection of depreciating capital without interest over a period, which the capital (asset or equipment) is used.

Process Engineering Economics - Depreciation

Depreciation- Methods

1. Straight Line method
2. Fixed Percentage (or) Declining Balance
3. Sinking fund
4. Sum-of-the-years' digits method

Process Engineering Economics - Equations for economic studies

1. Straight Line method

Annual
Depreciation

Depreciation up to any age(or time) n in life service of the asset or accumulated/cumulative depreciation at any age (or time) n in life service.

Book value at the end of year or beginning of the year

Principal or original sum or investment or fixed capital cost

2. Fixed Percentage or Declining Balance Method

$A_{D}=$ Depreciation factor $(f) \times$ Book value at the beginning of the year

$$
f=1-\sqrt[n]{\frac{L}{P}}
$$

Where, $f=$ depreciation rate (or) depreciation factor expressed in percentage; $L=$ salvage value or scrap value; $P=$ principal/ original sum or fixed capital investment; $B_{v}=$ book value at the end or beginning of the year; $n=$ total number of life service

Process Engineering Economics - Equations for economic studies

3. Sinking Fund Method

Process Engineering Economics - Equations for economic studies

3. Sinking Fund Method

Depreciation up to any age(or time) n in life service of the asset or accumulated/ cumulative depreciation at any age (or time) n in life service.

Process Engineering Economics - Equations for economic studies

3. Sinking Fund Method

Process Engineering Economics - References

- Herbert E. Schweyer. (1955) Process Engineering Economics, Mc Graw Hill
- Max S. Peters, Kaus D. Timmerhaus, Ronald E. West. (2004) Plant Design and Economics for Chemical Engineers, $5^{\text {th }}$ Ed., Mc Graw Hill
- Max Kurtz. (1920) Engineering Economics for Professional Engineers' Examinations, $3^{\text {rd }}$ Ed., Mc Graw Hill
- Frederic C. Jelen, James H. Black. (1985) Cost and Optimization Engineering, International Student edition, Mc Graw Hill
- Grant L. E, Grant Ireson. W, Leavenworth S. R. (1982) Principles of Engineering Economy, $7^{\text {th }}$ Ed., John Wiley and Sons.

