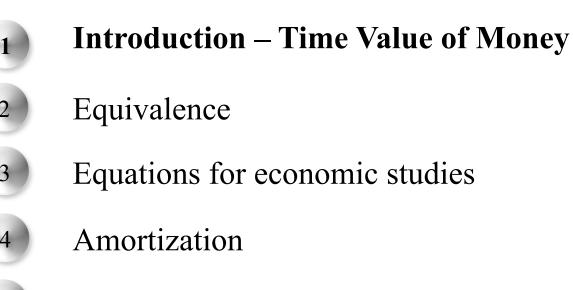
CH0401 Process Engineering Economics

Lecture 1c

Balasubramanian S

Department of Chemical Engineering SRM University

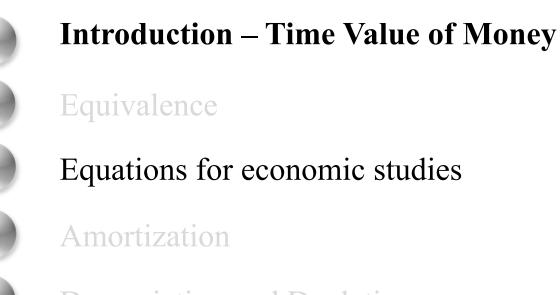
Process Engineering Economics



Depreciation and Depletion

5

Process Engineering Economics



Process Engineering Economics

Introduction – Time Value of Money

Equivalence

Equations for economic studies

Amortization

Depreciation and Depletion

S.No	Equation	Use		
1.	$F = P(1+i)^n = PC_F$	Single payment at the end of n^{th} period		
2.	$R = P\left(\frac{i(1+i)^n}{(1+i)^n - 1}\right) = \frac{P}{P_F}$	Uniform payment at the end of period (to pay fixed amount each year)		
3.	$F = R\left(\frac{(1+i)^n - 1}{i}\right)$	Future worth at the end of n^{th} period		
4.	$P = R\left(\frac{(1+i)^n - 1}{i(1+i)^n}\right) = RP_F$	Present Worth		

S.No	Equation	Use
4.	$P = R\left(\frac{(1+i)^n - 1}{i(1+i)^n}\right) = RP_F$	Present Worth
5.	$R = (P - L) \left(\frac{i(1+i)^{n}}{(1+i)^{n} - 1} \right) + L \times i$	Uniform payment with salvage (<i>L</i>)
6.	$(1+i)^n = \frac{1}{1 - \left(\frac{P}{R}\right)i}$	Rate of return or payment time when <i>L</i> is zero or salvage is neglected
7.	$n = \frac{-\log\left(1 - i\frac{P}{R}\right)}{\log(1 + i)}$	Payment time when <i>L</i> is zero or salvage is neglected

S. No	Equation	Use
8.	$P' = \frac{R'}{i'}$	Capitalized costs (or) perpetual uniform payment R' to an equivalent capital cost P' at he present time for a given interest rate.
9.	$C_k = (C_{FC} - S_{FD})f_k$ $\therefore f_k = \frac{(1+i)^n}{(1+i)^n - 1}$	Capitalized cost including cost factor.
10.	$R'' = P\left(\frac{i'}{\left(1+i'\right)^n - 1}\right)$	Sinking fund deposit, i' – is sinking fund interest rate and L is zero.
11.	$P = R''' \left(\frac{(1+i')^n - 1}{i \left[(1+i')^n - 1 \right] + i'} \right)$	Hoskold's formula - is rate of return, i' is sinking fund interest rate. Note that when $i = i'$ equation (10) reduces to equation (4)

- i = interest rate per period
- *i*' = sinking fund interest
- P = present sum of money
- F = sum at future date at '*n*' Periods
- R = end of period payment to give P in uniform series
- L = salvage at some future date
- C_F = compound interest factor equal to $(1+i)^n$

$$P_F$$
 = present worth factor equal to $\frac{(1+i)^n - 1}{i(1+i)^n} = \frac{P}{R}$

$$R'' =$$
periodic sinking fund deposit R''

R''' = the annual payment R''' to the owners each year which pays them when the studies of capital recovery for exploitation of mineral resources.

$$C_{FC}$$
 = fixed capital cost of equipment for a finite life of '*n*' years

$$C_k$$
 = capitalized cost of the equipment

$$S_{FD} = \frac{S}{(1+i)^n}$$
; salvage value or scrap value with compound interest

 f_k = capitalized cost factor

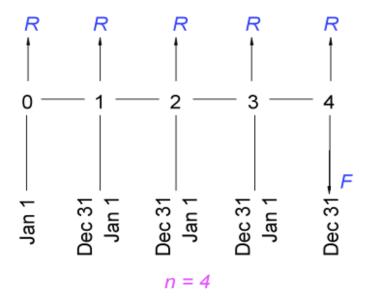
In the above table i.e. equations used for economic studies, the compound interest factors used in all the equations from 1 to 11 are based on two series

- Single Payment series
- Uniform annual series

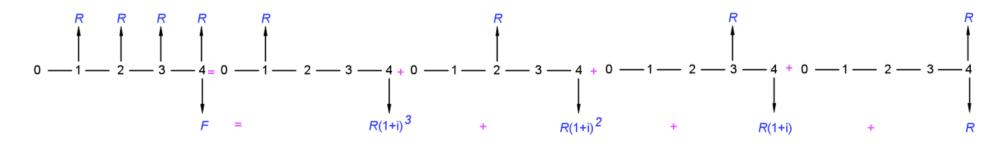
Single Payment		Uniform annual series				
Compound- amount factor	Present- worth factor	Sinking-fund factor	Capital recovery factor	Compound- amount factor	Present- worth factor	
Given P to	Given F to	Given F to	Given P to	Given R to	Given R to	
Find F	Find P	Find R	Find R	Find F	Find P	
(1+ <i>i</i>) ^{<i>n</i>}	$\frac{1}{(1+i)^n}$	$\frac{i!}{(1+i!)^n-1}$	$\frac{i(1+i)^n}{(1+i)^n-1}$	$\frac{(1+i)^n-1}{i}$	$\frac{(1+i)^n - 1}{i(1+i)^n}$	

Interest formulas relating a uniform series to its present worth and future worth We will use the relationship $F = P(1+i)^n$ in our uniform series derivation

The general relationship between R and F is shown in the figure given below



Where R = An end of period uniform series for n periods F = Future sum or Future worth Looking at the figure given below we see that if amount R is invested at end of each year for 4 years, the total amount F at the end of 4 years will be the sum of the compound amounts of the individual investments



In general case for *n* years

$$F = R (1+i)^{n-1} + \dots + R(1+i)^3 + R(1+i)^2 + R(1+i) + R \dots (1)$$

Where R = An end of period uniform series for *n* periods F = Future sum or Future worth Multiplying equation (1) by (1+i), we have

$$(1+i)F = R(1+i)^{n} + \dots + R(1+i)^{4} + R(1+i)^{3} + R(1+i)^{2} + R(1+i) \dots$$
(2)

Factoring out R and subtracting equation (1) gives

$$(1+i)F = R[(1+i)^{n} + \dots + (1+i)^{4} + (1+i)^{3} + (1+i)^{2} + (1+i)] \dots (3)$$

$$- F = R[(1+i)^{n-1} + \dots + (1+i)^{3} + (1+i)^{2} + (1+i) + 1] \dots (4)$$

$$iF = R[(1+i)^{n} - 1]$$

Solving above equation $iF = R[(1+i)^n - 1]$ for *F* gives

$$F = R \left[\frac{\left(1+i\right)^n - 1}{i} \right] \quad - - - -(5)$$

Thus we have an equation for *F* when *R* known i.e

$$F = R \left[\frac{(1+i)^n - 1}{i} \right] \quad - - - -(5)$$

The term inside the brackets

$$\left[\frac{(1+i)^n - 1}{i}\right]$$
 is called uniform series compound amount factor

We know that $F = P(1+i)^n$ Substituting this equation for F in equation (5) we get

$$F = R \left[\frac{(1+i)^{n} - 1}{i} \right] - - - - (5)$$

$$P(1+i)^{n} = R \left[\frac{(1+i)^{n} - 1}{i} \right]$$

$$P = R \left[\frac{(1+i)^{n} - 1}{i(1+i)^{n}} \right] - - - - (6)$$

Above equation (6) takes the form of *equation no. 4* of equations for economic studies given in the table (slide no. 6). The equation (6) can be used to calculate P if R is known. (Nomenclature for the above equations are given in slide no. 8)

Balasubramanian S

$$F = R \left[\frac{(1+i)^n - 1}{i} \right] \quad - - - -(5)$$

Above equation (5) takes the form of *equation no. 3* of equations for economic studies given in the table (slide no. 5). The equation (5) can be used to calculate F if R is known. (Nomenclature for the above equations are given in slide no. 8)

We know that

$$P = R \left[\frac{(1+i)^n - 1}{i(1+i)^n} \right] \quad ----(6)$$

Rearranging the above equation (6), we have

$$\frac{P}{R} = \left[\frac{(1+i)^{n} - 1}{i(1+i)^{n}}\right]$$
$$R = P\left[\frac{i(1+i)^{n}}{(1+i)^{n} - 1}\right] -\dots (7)$$

$$R = P\left[\frac{i(1+i)^{n}}{(1+i)^{n}-1}\right] -\dots (7)$$

Above equation (7) takes the form of *equation no. 2* of equations for economic studies given in the table (slide no. 5). The equation (7) can be used to calculate R if P is known. (Nomenclature for the above equations are given in slide no. 8)

Above equation (7) or *equation no. 2* of equations for economic studies given in the table (slide no. 5) can be re arranged as follows .

$$R = P\left[\frac{i(1+i)^{n}}{(1+i)^{n}-1}\right] -\dots (7)$$

$$R\left[(1+i)^{n}-1\right] = Pi(1+i)^{n}$$

$$\left[(1+i)^{n}-1\right] = \frac{Pi}{R}\left[(1+i)^{n}\right]$$

$$\frac{\left[(1+i)^{n}-1\right]}{(1+i)^{n}} = \frac{Pi}{R}$$

$$\frac{(1+i)^{n}}{(1+i)^{n}} - \frac{1}{(1+i)^{n}} = \frac{Pi}{R}$$

Process Engineering Economics – Equations for economic studies

$$1 = \frac{Pi}{R}$$

$$1 = \frac{Pi}{R} + \frac{1}{(1+i)^{n}}$$

$$1 - \frac{Pi}{R} = \frac{1}{(1+i)^{n}}$$

$$1 - \frac{Pi}{R} = \frac{1}{(1+i)^{n}}$$

$$\frac{1}{1 - \frac{Pi}{R}} = (1+i)^{n}$$
i.e. $(1+i)^{n} = \frac{1}{1 - \frac{Pi}{R}}$ -----(8)

$$(1+i)^{n} = \frac{1}{1 - \frac{Pi}{R}} \quad -----(8)$$

Above equation (8) takes the form of *equation no. 6* of equations for economic studies given in the table (slide no. 6). The equation (8) can be used to calculate *rate of return* or *Payment time when L is zero* or *salvage/scrap value is* neglected. (Nomenclature for the above equations are given in slide no. 8)

Taking log on both sides of equation (8) we have

$$n\log(1+i) = \log(1) - \log\left(1 - \frac{Pi}{R}\right)$$
$$n = \frac{-\log\left(1 - \frac{Pi}{R}\right)}{\log(1+i)} - \dots (9)$$

$$n\log(1+i) = \log(1) - \log\left(1 - \frac{Pi}{R}\right)$$
$$n = \frac{-\log\left(1 - \frac{Pi}{R}\right)}{\log(1+i)} - \dots (9)$$

Above equation (8) takes the form of *equation no. 6* of equations for economic studies given in the table (slide no. 6). The equation (8) can be used to calculate *rate of return* or *Payment time when L is zero* or *salvage/scrap value* is neglected. (Nomenclature for the above equations are given in slide no. 8)

- Herbert E. Schweyer. (1955) *Process Engineering Economics*, Mc Graw Hill
- Max S. Peters, Kaus D. Timmerhaus, Ronald E. West. (2004) *Plant Design and Economics for Chemical Engineers*, 5th Ed., Mc Graw Hill
- Max Kurtz. (1920) Engineering Economics for Professional Engineers' Examinations, 3rd Ed., Mc Graw Hill
- Frederic C. Jelen, James H. Black. (1985) *Cost and Optimization Engineering*, International Student edition, Mc Graw Hill
- Grant L. E, Grant Ireson. W, Leavenworth S. R. (1982) *Principles* of *Engineering Economy*, 7th Ed., John Wiley and Sons.