CH0401 Process Engineering Economics

Chapter 2 – Balance Sheet and Cost Accounting

Lecture 2a

Balasubramanian S

Department of Chemical Engineering SRM University

Process Engineering Economics

Process Engineering Economics

Capital Requirement for a Process Plant

Before an industrial plant can be put into operation, large sum of money must be available to purchase and install the required machinery and equipment

The Capital needed to supply the required manufacturing and plant facilities is called *fixed-capital investment*, while the necessary for operation of the plant is termed as *working capital*

Capital Requirement for a Process Plant

The sum of <u>Fixed Capital Investment (FCI)</u> and the <u>Working Capital</u> (WC) is known as the <u>Total Capital Investment (TCI)</u> i.e. TCI = FCI + WC

The Capital needed to supply the required manufacturing and plant facilities is called *fixed-capital investment*, while the necessary for operation of the plant is termed as *working capital*

Methods to find Capital Requirement for a Process Plant

- Details items estimate
- Unit cost estimate
- **Range of Percentage of delivered/or purchased equipment cost**
- Lang factor approximation
- Power factor applied to plant/capacity ratio
- Investment cost per unit of capacity

Turn over ratio

Capital Requirement for a Process Plant - *Range of Percentage Method**

Costs	Components	Range of FCI, %
	Purchased Equipment	15-40
	Purchased Equipment Installation	06-14
	Instrumentation and Controls (Installed)	02-12
	Piping (Installed)	04-17
Direct Costs	Electrical Systems (Installed)	02-10
	Buildings (Including Services)	02-18
	Yard Improvements	02-05
	Service Facilities (Installed)	08-30
	Land	01-02
	Engineering and Supervision	04-20
	Construction Expenses	04-17
Indirect Costs	Legal Expenses	01-03
	Contractor's Fee	02-06
	Contingency	05-15

* Typical percentage of FCI values for direct and indirect cost segments for multi purpose plants or large additions to existing facilities is tabulated

Estimation of FCI using the ranges of percentage of process plant costs

Make a study estimate of the FCI for a process plant if the purchasedequipment cost is \$100,000. Use the ranges of process–plant values as given in slide 7 table for the process plant handling both soli and fluids a high degree of automatic controls and essentially out door operation. Do not include land.

Generally, when all the percentages are added, they will not total to 100 percent. Therefore, all percentages must be normalized to a total of 100 by dividing each percentage by the total sum over 100. The estimated cost for a component is then calculated as \$100,000 multiplied by the normalized percentage for the equipment.

Process Engineering Economics – Capital Requirements

Solution

Compor Purchas Purchas Instrum

Costs

	25/109= 22.9		PC	× NP /NPPE
nents	Selected Range, %	Normalized percentage, %	Estimated Cost, \$	Rounded Values, \$
ed Equipment	25	22.9	100156.24	100000
ed Equipment Installation	9	8.3	36056.25	36000
entation and Controls (Installed)	10	9.2	40062.50	40000
Installed)	8	7.3	32050.00	32000
al Systems (Installed)	5	4.6	20031.25	20000
zs (Including Services)	5	4.6	20031.25	20000

	Total	109	100	436681.22	436000
	Contingency	8	7.3	32050.00	32000
	Contractor's Fee	2	1.8	8012.50	8000
Indirect Costs	Legal Expenses	2	1.8	8012.50	8000
	Construction Expenses	10	9.2	40062.50	40000
	Engineerig and Supervision	8	7.3	32050.00	32000
	Land	0	0.0	0.00	0
	Service Facilities (Installed)	15	13.8	60093.75	60000
	Yard Improvements	2	1.8	8012.50	8000
	Buildings (Including Services)	5	4.6	20031.25	20000
Direct Costs	Electrical Systems (Installed)	5	4.6	20031.25	20000
	(instance)	U U	715	02000.00	52000

PC = <u>P</u>urchased <u>C</u>ost of the equipment, \$ NP = <u>N</u>ormalized <u>P</u>ercentage for that component, % NPPE = <u>N</u>ormalized <u>P</u>ercentage for <u>P</u>urchased <u>E</u>quipment, %

Lang Factor Method

Factor × Delivered equipment cost = FCI or TCI

Type of Plant	Lang Factors		
Type of Plant	FCI	TCI	
Solid	4.0	4.7	
Solid-Fluid	4.3	5.0	
Fluid	5.0	6.0	
FCI = Fixed Capital Investmet			
TCI = Total Capital Investment			

This technique originally proposed by LANG has been used in the past for quickorder of magnitude cost estimate for process plants. Lang suggested multiplying the delivered cost of the equipment by the factors sated in the above table to obtain the FCI and TCI.

Lang Factor Method

Example Estimate the total capital investment for a refinery addition for which the delivered or purchased cost is $\$ 8 \times 10^{6}$. Assume the refinery is a fluid processing plant.

Type of Blant	Lang Factors	
Type of Plaint	FCI	TCI
Solid	4.0	4.7
Solid-Fluid	4.3	5.0
Fluid	5.0	6.0
ECL = Fixed Capital Investmet		

FCI = Fixed Capital Investmet

TCI = Total Capital Investment

Solution

Total Capital Investment = $8 \times 10^{6} \times 6.0 =$ **\$48,000,000**

Process Engineering Economics – References

- Herbert E. Schweyer. (1955) *Process Engineering Economics*, Mc Graw Hill
- Max S. Peters, Kaus D. Timmerhaus, Ronald E. West. (2004) *Plant Design and Economics for Chemical Engineers*, 5th Ed., Mc Graw Hill
- Max Kurtz. (1920) Engineering Economics for Professional Engineers' Examinations, 3rd Ed., Mc Graw Hill
- Frederic C. Jelen, James H. Black. (1985) *Cost and Optimization Engineering*, International Student edition, Mc Graw Hill
- Grant L. E, Grant Ireson. W, Leavenworth S. R. (1982) *Principles* of *Engineering Economy*, 7th Ed., John Wiley and Sons.