Computer Aided Process Plant Design

Material Balance

S. Balasubramanian

Department of Chemical Engineering SRM University, Kattankulathur-603203

1. MATERIAL BALANCE

Law of Conservation of Mass

- Matter (Solid, Liquid and Gases) can take one form into other but the total amount of mass remains unchanged.
- "Mass is neither created nor destroyed"
- Father of Modern Chemistry (a French Nobel man)
- Antoine-Laurent de Lavoisier, 1789

1. MATERIAL BALANCE

Law of Conservation of Mass

A balance on a conserved quantity (total mass, mass of particular component (or species), energy, momentum) in a system (a single process unit, a collections of units or an entire process) may be written in the following way:

Input	+	Generation	-	Output	-	Consumption	$=$	Accumulation

1. MATERIAL BALANCE

Law of Conservation of Mass - Example

Each year 50,000 people move into the a city like Chennai, Tamil Nadu, India.75,000 people move out, 22,000 are born, and 19,000 die. Write a balance on the population of the city

1. MATERIAL BALANCE

Law of Conservation of Mass - Example

1. MATERIAL BALANCE

Law of Conservation of Mass - Example

1. MATERIAL BALANCE

Law of Conservation of Mass - Example
People move into
the city, 50,000
P / yr

Balance equation

Born in the City, 22,000 P/yr

People move out of the city, 75,000 P/yr

Die in the City, 19,000
P/yr

Input	+	Generation	-	Output	-	Consumption	$=$	Accumulation
50,000 (enters through system boundaries)		22,000 (produced within system)		$75,000$ (leaves through the system boundaries)		19,000 (consumed within the system)		= ? (build up within the system

1. MATERIAL BALANCE

Law of Conservation of Mass - Example

People move into
the city, 50,000
P / yr

Balance equation

Input	+	Generation	Output	Consumption	$=$	Accumulation
50,000 (enters through system boundaries)		22,000 (produced within system)	75,000 (leaves through the system boundaries)	19,000 (consumed within the system)		$=-22,000$ (build up within the system

2. CLASSIFICATION

 Classification of Material Balance Problems

 Classification of Material Balance Problems

 2.

 2.}-

0^{2}

1. MATERIAL BALANCE

Law of Conservation of Mass

A balance on a conserved quantity (total mass, mass of particular component (or species), energy, momentum) in a system (a single process unit, a collections of units or an entire process) may be written in the following way:

Input	+	Generation	-	Output	-	Consumption	$=$	Accumulation

2. ALGORITHM - Step-by-Step

Algorithm for solving material balance problems - Without Chemical Reactions (Single units)

1. Read and understand the problem
2. Draw a sketch of the process and specify system boundary
3. Place labels (symbols, numbers and units) on the diagram for all of the known flows, materials and compositions
4. Obtain any data you need to solve the problem that are missing
5. Choose a basis
6. Determine the number of variables whose values are unknown

2. ALGORITHM - Step-by-Step

Algorithm for solving material balance problems - Without Chemical Reactions (Single units)

7. Determine the number of independent equations to carry out a degrees-of-freedom
8. Write down the equations to be solved in terms of known's and unknowns
9. Solve the equations and calculate the quantities
10. Check the answer

Note: It is good always to check the answer through over all balance!

2. EXAMPLE PROBLEM

Problem statement

1. A continuous mixer mixes NaOH with $\mathrm{H}_{2} \mathrm{O}$ to produce an aqueous solution of

NaOH . Determine the composition and flow rate of the product if the flow rate of NaOH is $1000 \mathrm{~kg} / \mathrm{h}$ and the ratio of flow rate of water to the production solution
is 0.9 . NaOH is $1000 \mathrm{~kg} / \mathrm{h}$ and the ratio of flow rate of water to the production solution
is 0.9 .

 NaOH is $1000 \mathrm{~kg} / \mathrm{h}$ and the ratio of flow rate of water to the production solution
is 0.9 .

 .

\qquad
\qquad

2. EXAMPLE PROBLEM

Step: 01 Read and understand the problem

- Equipment
- Process
- Process
- Components in feed (Pure - Water \& NaOH)
- Components in product ($\mathrm{NaOH}+$ Water)
- Flow rates and composition
$-1000 \mathrm{~kg} / \mathrm{h}$ of NaOH in the feed
- Flow rate of water per product solution $=0.9$
- Flow rate of water per product solution $=0.9$
- Flow rate of the water $=0.9 \times$ Product solution

Step： 02 Draw a sketch of the process and specify system boundary

2．EXAMPLE PROBLEM

（
Product， P
（ $\mathrm{NaOH}+$ Water）： \square
\square \qquad
\qquad

 \qquad
－

相 ） \square

 －号

 c－

[^0]\qquad

\qquad
 \square \square路 \square － －號
 正

2. EXAMPLE PROBLEM

Step: 03
Draw a sketch of the process and specify system boundary

2. EXAMPLE PROBLEM

Step: 04 Obtain any data you need to solve the problem that are missing

- Molecular Weight
- Density
- Temperature
- Pressure
- Melting Point
- Boiling Point

$$
\begin{aligned}
& \text { You can look up these values in physical } \\
& \text { properties data base (For instance, Perry's } \\
& \text { Chemical Engineers Hand Book) }
\end{aligned}
$$

For our mixing problem no data is required as listed above i.e. Problem could be solvable without the above listed data.

2. EXAMPLE PROBLEM

Step: 05 Choose a basis

- Basis is the reference chosen by you for the calculations to make the problem easier to solve
- The basis may be time such as hours or a given mass of material or some other convenient quantity (mole).
- It is best to use a unit basis of 1 or 100. For instance, kilograms, hours, moles or cubic meter.
- For liquid 1 or 100 kg ; similarly 1 or 100 moles is often a good choice for gases.

Always state the basis you have chosen for your calculation by writing it prominently on your calculation sheet

2. EXAMPLE PROBLEM

Step 06: Determine the number of variables whose values are unknown

Water, $W \quad$ Feed, F

2. EXAMPLE PROBLEM

Looking at the problem you can write 3 material balances:

1. One balance equation for NaOH
2. One for $\mathrm{H}_{2} \mathrm{O}$
3. One Overall Balance
4. Flow rate of water/Product stream $=0.9$
\qquad
(
. One Overall

Step 07: Determine the number of independent equations to carry out degrees-of-freedom.
tep 0. Determine the number of independentequatons to cany out degrees-of-freedom.
Unknown List
Unknown List
Unknown List
W - Flow rate of water,
W - Flow rate of water,
W - Flow rate of water,
kg/h
kg/h
kg/h
P - Flow rate of Product,
P - Flow rate of Product,
P - Flow rate of Product,
kg/h
kg/h
kg/h
$P_{\mathrm{H}_{2}} \mathrm{O}$-Flow rate of water in
$P_{\mathrm{H}_{2}} \mathrm{O}$-Flow rate of water in
$P_{\mathrm{H}_{2}} \mathrm{O}$-Flow rate of water in
product, kg/h
product, kg/h
product, kg/h
P_{NaOH}-Flow rate of water in
P_{NaOH}-Flow rate of water in
P_{NaOH}-Flow rate of water in
product, kg/h
product, kg/h
product, kg/h

Unknown List

$W-$| Flow rate of water, |
| :---: |
| kg / h |

$P-$| Flow rate of Product, |
| :---: |
| kg / h |
| $P_{\mathrm{H}_{2} \mathrm{O}}-$ Flow rate of water in |
| product, kg / h |

$P_{\mathrm{NzOH}}-$ Flow rate of water in
product, kg / h

.
\qquad

[

2. EXAMPLE PROBLEM

Step 07: Determine the number of independent equations to carry out degrees-of-freedom.

Looking at the problem you can write 3 material balances:

1. One balance equation for NaOH

4 relations

Flow rate of NaOH in the NaOH feed stream + Flow rate of NaOH in $\mathrm{H}_{2} \mathrm{O}$ stream = Flow rate of NaOH in product Stream

$$
F_{\mathrm{NaOH}}+W_{\mathrm{H}_{2} \mathrm{O}}=P_{\mathrm{NaOH}} \text { i.e. } F_{\mathrm{NaOH}}+0=P_{\mathrm{NaOH}}(\text { Since pure } \mathrm{NaOH} \text { is used })
$$

2. One for $\mathrm{H}_{2} \mathrm{O}$

Flow rate of $\mathrm{H}_{2} \mathrm{O}$ in NaOH feed stream + Flow rate of $\mathrm{H}_{2} \mathrm{O}$ in $\mathrm{H}_{2} \mathrm{O}$ feed stream $=$ Flow rate of $\mathrm{H}_{2} \mathrm{O}$ in Product stream

$$
F_{\mathrm{NaOH}}+W_{\mathrm{H}_{2} \mathrm{O}}=P_{\mathrm{NaOH}} \quad \text { i.e. } 0+W_{\mathrm{H}_{2} \mathrm{O}}=P_{\mathrm{NaOH}}\left(\text { Since pure } \mathrm{H}_{2} \mathrm{O} \text { is used }\right)
$$

3. One Overall balance

Flow rate of NaOH in the NaOH feed stream + Flow rate of $\mathrm{H}_{2} \mathrm{O}$ in $\mathrm{H}_{2} \mathrm{O}$ feed stream $+=$ Flow rate of Product stream $\left(\mathrm{H}_{2} \mathrm{O}+\mathrm{NaOH}\right)$

$$
F_{\mathrm{NaOH}}+W_{\mathrm{H}_{2} \mathrm{O}}=P_{\mathrm{NaOH}}
$$

4. Flow rate of Water $(W) /$ Product stream $(P)=0.9$

2. EXAMPLE PROBLEM

Step 07: Determine degrees-of-freedom

Degrees of freedom $(D O F)=$ Number of unknowns $\left(N_{U}\right)-$ Number of independent equations $\left(N_{E}\right)$
When you calculate the number of degrees of freedom you ascertain the solvability of the problem. Three out come exists

Case	DOF	Possibility of Solution
NU $=$ NE	0	Exactly specified (determined) solution exists
NU $>$ NE	>0	Under specified; more independent equations required
NU < NE	<0	Over specified; more unknowns are required

Step 07: Determine degrees-of-freedom

Therefore, $\mathrm{DOF}=\mathrm{N}_{\mathrm{u}}-\mathrm{N}_{\mathrm{E}}=4-4=0$

2. EXAMPLE PROBLEM

From step 6: Number of Unknowns $\left(\mathrm{N}_{\mathrm{u}}\right)=4$ (i.e. $W, P, P_{\mathrm{H}_{2} \mathrm{O}}, P_{\mathrm{NaOH}}$)
 From step 7: Number of Independent Equations $\left(\mathrm{N}_{\mathrm{E}}\right)=4$

(

-

[^1]
2. EXAMPLE PROBLEM

Step 08: Write down the equations to be solved in terms of known's and unknowns

In particular, you should attempt to write linear equations rather than nonlinear equations

Recall that the product of variables or ratios of variables or logarithm or exponent of a variable and so on in an equation causes the equation to be non linear

In many cases you can transfer the non-linear equation into linear one
For instance, in our example, the relation given $W / P=0.9$ is a non-linear relation.
If you multiply both sides by P in above relation you get a linear equation i.e.

$$
\begin{gathered}
P \times W / P=P \times 0.9 \\
\text { i.e. } W=0.9 P
\end{gathered}
$$

2. EXAMPLE PROBLEM

Step 08: Write down the equations to be solved in terms of known's and unknowns
n particular, you should attempt to write linear equations rather than nonlinear equations

Overall Balance

$$
F_{\mathrm{NaOH}}+W_{\mathrm{H}_{2} \mathrm{O}}=P_{\mathrm{NaOH}}
$$

NaOH Balance
$F_{\mathrm{NaOH}}+F_{\mathrm{H}_{2} \mathrm{O}}=P_{\mathrm{NaOH}}$ i.e. $F_{\mathrm{NaOH}}+0=P_{\mathrm{NaOH}}$ (Since pure NaOH is used)
$\mathrm{H}_{2} \mathrm{O}$ Balance

$$
F_{\mathrm{NaOH}}+F_{\mathrm{H}_{2} \mathrm{O}}=P_{\mathrm{NaOH}} \text { i.e. } 0+F_{\mathrm{H}_{2} \mathrm{O}}=P_{\mathrm{NaOH}}\left(\text { Since pure } \mathrm{H}_{2} \mathrm{O} \text { is used }\right)
$$

Flow rate of Water $(W) /$ Product stream $(P)=0.9$ i.e. $W=0.9 P$

2. EXAMPLE PROBLEM

Step 09: Solve the equation and calculate the quantities asked Overall Balance

$$
\begin{equation*}
F_{\mathrm{NaOH}}+W_{\mathrm{H}_{2} \mathrm{O}}=P_{\mathrm{NaOH}+\mathrm{H}_{2} \mathrm{O}} \tag{1}
\end{equation*}
$$

We know $W_{\mathrm{H}_{2} \mathrm{O}}=0.9 P_{\mathrm{NaOH}+\mathrm{H}_{2} \mathrm{O}}$ substitute this relation in equation (1)
We get, $F_{\mathrm{NaOH}}+0.9 P_{\mathrm{NaOH}+\mathrm{H}_{2} \mathrm{O}}=P_{\mathrm{NaOH}+\mathrm{H}_{2} \mathrm{O}}$
$F_{\mathrm{NaOH}}+0.9 P_{\mathrm{NaOH}+\mathrm{H}_{2} \mathrm{O}}-P_{\mathrm{NaOH}+\mathrm{H}_{2} \mathrm{O}}=0$
$0.9 P_{\mathrm{NaOH}+\mathrm{H}_{2} \mathrm{O}}-P_{\mathrm{NaOH}+\mathrm{H}_{2} \mathrm{O}} \quad=F_{\mathrm{NaOH}}$
$P(1-0.9)=1000$
$P_{\mathrm{NaOH}+\mathrm{H}_{2} \mathrm{O}}=1000 / 0.1=10,000 \mathrm{~kg} / \mathrm{h}$ Substitute $P_{\mathrm{NaOH}+\mathrm{H}_{2} \mathrm{O}}$ in equation (1) we get
$1000+W_{\mathrm{H}_{2} \mathrm{O}}=10,000 \mathrm{~kg} / \mathrm{h}$
$W_{\mathrm{H}_{2} \mathrm{O}}=9000 \mathrm{~kg} / \mathrm{h}$

Step 09：Solve the equation and calculate the quantities asked

2．EXAMPLE PROBLEM

2．EXAMPLE PROBLEM

\qquad

\begin{abstract}

Abstract

\end{abstract}

$$
\begin{align*}
& x_{\mathrm{NaOH}}^{P}=\frac{1000}{10000}=0.1 \\
& x_{\mathrm{H}_{2} \mathrm{O}}^{P}=\frac{9000}{10000}=0.9 \\
& F_{\mathrm{NaOH}}=1000 \mathrm{~kg} / \mathrm{h} \\
& W_{\mathrm{H}_{2} \mathrm{O}}=9000 \mathrm{~kg} / \mathrm{h} \\
& P_{\mathrm{NaOH}+\mathrm{H}_{2} \mathrm{O}}=10000 \mathrm{~kg} / \mathrm{h}
\end{align*}
$$

. ．
－
\square
者 （ O

$$
\pi
$$

in

$$
\square
$$

. I \square －
\qquad
 0 0

$$
1
$$

e － $+$

 ，
\square
\square
\square
\square
\square
\square ， ，
都
\square P迤
\square
\square

\square
\square
\square

2. EXAMPLE PROBLEM
 Step 10: Check the answer

Water, $W=9000 \mathrm{~kg} / \mathrm{h}$
Feed, $F=1000 \mathrm{~kg} / \mathrm{h}$

$$
\begin{aligned}
& x_{\mathrm{NaOH}}^{P}=\frac{1000}{10000}=0.1 \\
& x_{\mathrm{H}_{2} \mathrm{O}}^{P}=\frac{9000}{10000}=0.9
\end{aligned}
$$

[^0]: ，

[^1]: \qquad

