Analysis of Mixtures

Problem #1 : If a bucket holds 2 kg of NaOH, how many kmoles of NaOH does it contain?

Solution Basis : 2 kg of NaOH

S. NO.	Component	Molecular formula	Molecular Weight	Weight	Moles
		(-)	(kg/kmol)	(kg)	(kmol)
01	Sodium Hydroxide	NaOH	40	2	0.05

Note: Moles of NaOH = Weight of NaOH/ Molecular Weight of NaOH = 2/40 = 0.05 kmol

Problem #2 : How many kilogram of NaOH is there in 7.50 gmol of NaOH?

Solution Basis : 7.50 g of NaOH

S. NO.	Component	Molecular formula	Molecular Weight	Weight	Moles
		(-)	(g/gmol)	(kg)	(gmol)
01	Sodium Hydroxide	NaOH	40	0.3	7.50

Note: Weight of NaOH = Gram moles of NaOH x Molecular Weight of NaOH = $7.50 \times 40 = 300$ grams. 300 grams NaOH = 0.3 kilograms of NaOH. **Problem #3** : What is the molecular weight of a super conductor which has the following elements ?

Barium, Yttrium, Copper, Oxygen.

Solution

Element	Number of Atoms	Atomic Weights	Mass (g)
Ва	2	137.347	2 x 137.24 = 274.480
Y	16	63.546	16 x 63.546 = 1016.700
Cu	24	16.00	24 x 16.00 = 384.000
0	1	88.905	1 x 88.905 = 88.905
		Total	1764.085 g/gmol

Problem #4 : A mixture of gases has the following composition by mass

= 16.0 %
= 4.0 %
= 17.0 %
= 63.0 %

What is the molar composition of the gas mixture?

	Total			100.0	3.279	1.000
4	Nitrogen N ₂		28	63.00	2.250	0.690
3	Carbon dioxide	Carbon dioxide CO ₂		17.00	0.386	0.120
2	Carbon monoxide	СО	28	04.00	0.143	0.044
1	Oxygen	0 ₂	32	16.00	0.500	0.150
S. No.	Components	Formula (-)	Weight (kg/kmol)	(kg)	(kmol)	fraction (-)
		Molecular	Molecular	Mass	Moles	Mole

Solution

Analysis of Mixtures

Problem #5 : Average molecular weight of air

Solution : Basis 100 moles of air

S. No.	Components	Molecular Formula	Molecular Weight	Moles	Mass	Weight Percentage
		(-)	(kg/kmol)	(kmol)	(kgl)	(%)
1	Oxygen	O ₂	32.0	21.0	672.00	23.17
2	Nitrogen	N ₂	28.2	79.0	2228.00	76.83
	Total			100.0	2900.00	100.00

The average molecular weight of the mixture is given as

Average molecular weight =
$$\frac{\sum_{i=1}^{n} M_{i}}{\sum_{i=1}^{n} x_{i}}$$

Where M_i = mass or weight of *i* components in the mixture

 x_i = moles of of *i* components in the mixture

Therefore the average molecular weight of the air = 2900 kg / 100 kmol = 29 kg/kmol

Problem #6 : You have 100 kilogram of gas of the following composition

$$CH_4 = 30\%$$

 $H_2 = 10\%$
 $N_2 = 60\%$

What is the average molecular weight of the air ?

Analysis of Mixtures

Solution : 100 kilogram of gas mixture

S. No.	Components	Molecular Formula	Molecular Weight	Mass	Moles	Weight Percentage
5. NO.	Components		(1.5. (1.55.5.1)	(1.5)	(1	
		(-)	(Kg/Kmol)	(Kg)	(KMOI)	(-)
1	Methane	CH_4	16	30.00	1.875	30
2	Hydrogen	H ₂	2	10.00	5.000	10
3	Nitrogen	N ₂	28	60.00	2.143	60
	Total			100.0	9.018	100

The average molecular weight of the mixture is given as

Average molecular weight =
$$\frac{\sum_{i=1}^{n} M_i}{\sum_{i=1}^{n} x_i}$$

Where M_i = mass or weight of *i* components in the mixture

 x_i = moles of *i* components in the mixture

Therefore the average molecular weight of the gas = 100 kg /9.018 kmol = 29 kg/kmol = 11.089 kg/kmol

- **Problem #7** : An industrial drain cleaner contains 5.0 kf of water and 5 kg of NaOH. What are the mass (or weight) fraction and mole fraction of each component in the drain cleaner.
- Solution : 10 kg of solution (5 kg of water and 5 kg of NaoH)

		Molecular Formula	Molecular Weight	Mass	Mass fraction	Mole	Mole fraction
S. No.	Components						
		(-)	(kg/kmol)	(kg)		(kmol)	(-)
1	Water	H ₂ O	32	5.00	0.500	0.278	0.69
2	Sodium hydroxide	NaOH	40	5.00	0.500	0.125	0.31
	Total			10.00	1.000	0.403	1.00

Problem#8 : A liquefied mixture of n-butane, n-pentane and n-hexane has the following composition:

n-butane	:50%
n-pentane	: 30%
n-hexane	: 20%

For this mixture calculate:

- (a) The weight fraction of each component
- (b) Mole fraction of each component
- (c) Mole percent of each component
- (d) The average molecular weight of the mixture

Solution : 100 kilogram of liquefied mixture

		Molecular Formula	Molecular Weight	Mass	Mass fraction	Mole	Mole fraction
S. No.	Components						
		(-)	(kg/kmol)	(kg)		(kmol)	(-)
1	n-butane	C_4H_{10}	58	50	0.50	0.86	0.57
2	n-pentane	C_5H_{12}	72	30	0.30	0.42	0.28
3	n-hexane	C_6H_{14}	86	20	0.20	0.23	0.15
	Total			100	1.00	1.51	1.00