

ASSESSMENT OF AIR POLLUTION IN INDIAN CITIES



### REPORT

| 1. Introduction                         | 2  |
|-----------------------------------------|----|
| 2. Methodology and Data                 | 3  |
| 3. Inferences and Discussion            | 4  |
| 3.1 Andhra Pradesh                      | 5  |
| 3.2 Bihar                               | 6  |
| 3.3 Chandigarh                          | 7  |
| 3.4 Chhattisgarh                        | 8  |
| 3.5 Delhi                               | 9  |
| 3.6 Gujarat                             | 10 |
| 3.7 Haryana                             | 12 |
| 3.8 Jharkhand                           | 13 |
| 3.9 Karnataka                           | 14 |
| 3.10 Madhya Pradesh                     | 16 |
| 3.11 Maharashtra                        | 17 |
| 3.12 Odisha (Orissisha (Orissa)         | 19 |
| 3.13 Punjab                             | 20 |
| 3.14 Rajasthan                          | 21 |
| 3.15 Tamil Nadu                         | 22 |
| 3.16 Telengana                          | 23 |
| 3.17 Uttar Pradesh                      | 24 |
| 3.18 Uttarakhand                        | 25 |
| 4 Way Forward                           | 26 |
| 5. Comparison of air pollution policies | 27 |
| 6. Appendix I                           | 28 |
| 7. Appendix II                          | 35 |
|                                         |    |

### AIRPOCALYPSE: ASSESSMENT OF AIR POLLUTION IN INDIAN CITIES

Written by Sunil Dahiya, Greenpeace Lauri Myllyvirta, Greenpeace Nandikesh Sivalingam, Greenpeace

Acknowledgements Harshit Sharma, Narendra Dubey and Ashish Fernandes

Design Divya Kukreti, Studio Kuk

Published by GPET, released in January 2017

For more information, contact: sunil.dahiya@greenpeace.org

Printed on 100% recycled paper



## 1.2 MILLION DEATHS EVERY YEAR DUE TO OUTDOOR AIR POLLUTION IN

3 GDP LOST DUE TO AIR POLLUTION

### EXECUTIVE SUMMARY

This report shows that deadly air pollution is not a problem restricted to Delhi-NCR (National Capital Region) or even to India's metros. It is a national problem that is killing 1.2 million Indians every year and costing the economy an estimated 3% of GDP. If the country's development is important, fighting air pollution has to be a priority.

Data gathered by Greenpeace India from state pollution control boards shows that there are virtually no places in India complying with WHO and National Ambient Air Quality (NAAQ) standards, and most cities are critically polluted. Except for a few places in Southern India which complied with NAAQ standards, the entire country is experiencing a public health crisis due to high air pollution levels.

Due to the range of different sectors responsible for pollutant emissions, urgent and determined action is needed by a number of ministries in the states and central governments, industry and general public.

Greenpeace is calling on the central and state governments to:

- 1. Institute robust monitoring of air quality across the country and make the data publicly available in real time. This should be coupled with a health advisory and 'red alerts' for bad-air days, which would enable the public to take decisions to protect their health and the environment and automatically institute measures to protect citizens, such as shutting down schools, traffic reduction measures, shutting down power plants and industries etc.
- 2. Use the data as a basis to fine tune pollution reduction strategies that must, inter alia seek to improve public transport and reduce petrol/diesel vehicle use, strengthen enforcement to get polluting vehicles off the roads, introduce higher fuel standards (Bharat VI), enforce stricter emission regulations and improved efficiency for thermal power plants and industries, move from diesel generators to rooftop solar, increase use of clean renewable energy, offer incentives for electric vehicles, dust removal from roads, regulate construction activities and stop burning of biomass and waste.

These strategies should be formalized as a time bound action plan which has targets and penalties. While some actions might need to be city or region-specific, there are a broad range of actions that will be universally applicable.

Vocal public participation is critical in reducing air pollution. Our choices in terms of electricity, transportation and waste management can play a major role in managing pollution levels, as are our choices in terms of political leaders who support the goal of reducing air pollution.

### INTRODUCTION

In 2016, severe air pollution has disrupted everyday life, especially during the winter.

IN 2015 AIR POLLUTION (PM<sub>2.5</sub>) LEVELS INCREASED IN A RAPID MANNER OVERTAKING EVEN CHINA

<sup>1</sup> http://documents.worldbank.org/ curated/en/220721468268504319/ pdf/700040v10ESW0P0box0374379B00PUBLIC0. pdf In 2016, severe air pollution has disrupted everyday life, especially during the winter. In 2015 air pollution (PM<sub>2.5</sub>) levels increased in a rapid manner overtaking even China. Even though pollution levels are increasing across the country, the emphasis so far has been on Delhi. There has been a growing realization that the majority of Delhi's pollution is coming from outside its borders and that pollution levels in other states like Karnataka, Tamil Nadu and Maharashtra are also increasing. However, the country is yet to come to the full understanding that air pollution is a national problem and to win the fight against it, we need to act as a country and across city or even regional boundaries.

India's air pollution has become a public health and economic crisis. There are increasing numbers of people who die prematurely every year with the increasing pollution levels. DEATHS DUE TO AIR POLLUTION ARE ONLY A FRACTION LESS THAN THE NUMBER OF DEATHS CAUSED BY TOBACCO USAGE. Global Burden of Disease (GBD), a comprehensive regional and global research program including 500 researchers representing over 300 institutions and 50 countries, has estimated that 3283 Indians died per day due to outdoor air pollution in India in 2015, making the potential number of deaths due to outdoor air pollution in India in 2015 to 11.98 lakh. On the economic front, loss of productivity and the forced closures of schools and industries have already started impacting our economy. The World Bank estimates that India loses around 3% of its GDP due to air pollution. This makes air pollution one of the biggest issues to fight if we are to protect peoples' lives, public health and our economy.

Air pollution is a complex issue, requiring an array of solutions. There are many sources that contribute to pollution across the country. Depending on region and climatic conditions, the contribution of particular sources will also differ. However, what is very clear is that irrespective of where you live, burning of fossil fuels (coal & oil) contributes majorly to air pollution levels across regions.

The purpose of this report is to show that air pollution is a national problem and it needs to be addressed equally across the country and not only in Delhi or the National Capital Region. The report also tries to identify major sources of pollution in parts of the country based on past research. As a way ahead for the country, our long term goals to solve the air pollution crisis can be universal, while short term solutions are to be decided based on the levels of pollution prevailing in the region.

### METHODOLOGY AND DATA

The Central Pollution Control Board has instituted the National Air Quality Monitoring Programme (NAMP). Under NAMP, three air pollutants viz., Sulphur Dioxide (SO<sub>2</sub>), Nitrogen Dioxide (NO<sub>2</sub>) and Particulate Matter size equal to or less than 10 micron (PM<sub>10</sub>), have been identified for regular monitoring at all the locations. The NAMP network presently comprises 621 operating monitoring stations located in 262 cities/towns in 29 states and 5 union territories across the country."<sup>2</sup> Greenpeace tried to collect data on PM<sub>10</sub> levels for these NAMP station across the country through various sources such as Right to Information (RTI) application filed to SPCB (State Pollution Control Boards) to gather data, SPCB's websites and annual reports of SPCBs etc. Simultaneously, a secondary literature review was carried out to understand the sources of pollution, to capture the most recent source apportionment studies carried out throughout the country.

> SULPHUR DIOXIDE (SO<sub>2</sub>), NITROGEN DIOXIDE (NO<sub>2</sub>) AND PARTICULATE MATTER

AIR POLLUTANTS THAT HAVE BEEN IDENTIFIED FOR REGULAR MONITORING AT ALL THE LOCATIONS THROUGHOUT THE COUNTRY

Delhi has been recording dangerous levels of air pollution putting everyone, but especially children, elders and patients, at serious bealth risk. Image: Sudhanshu Malhotra / Greenpeace

<sup>2</sup> http://cpcb.nic.in/AQI\_NAMP\_ Rep\_June2016.pdf

### INFERENCES AND DISCUSSION





The assessment of Air Pollution levels for cities in Andhra Pradesh highlighted that  $PM_{10}$  concentrations in three cities where the data was available from the pollution control board were higher than the annual average of 60 µg/m<sup>3</sup> as prescribed under NAAQS.  $PM_{10}$  concentrations in Anantpuram, Guntur and Visakhapatnam were respectively 84, 100 and 61 µg/m<sup>3</sup> for year 2015.



### V PM<sub>10</sub> CONCENTRATIONS ACROSS CITIES IN ANDHRA PRADESH DURING 2015

Further analysis of the monthly variations in the data during 2015 suggests that the  $PM_{10}$  levels in all three cities were constantly higher than the annual average prescribed by CPCB throughout the year. From  $PM_{10}$  concentrations from January to May were relatively high as compared to other time of the year worsening the situation to even dangerous levels.

### PM<sub>10</sub> CONCENTRATIONS ACROSS CITIES IN ANDHRA PRADESH DURING 2015



THREE CITIES IN ANDHRA PRADESH RECORDED PM<sub>10</sub> LEVELS HIGHER THAN THE ANNUAL AVERAGE OF 60 µG/M<sup>3</sup> AS PRESCRIBED UNDER NAAQS

# The assessment of Air Pollution levels for cities in Bihar highlighted that $PM_{10}$ concentrations in Patna and Muzzafarpur were respectively at 200 µg/m<sup>3</sup> and 164 µg/m<sup>3</sup> for year 2015, which were at around 3 times the NAAQS annual limit set by CPCB and 8 to 10 times the annual limit set by WHO for $PM_{10}$ . The data is not just an indicator of hazardous levels of pollution but a continuously ringing alarm for years indicating the health emergency faced by the people inhabiting the area.





Detailed observation of the data suggests that the PM<sub>10</sub> levels has been hazardous and very high all around the year for 2015 for both Patna and Muzzafarpur with November to March being the severely polluted months when the PM<sub>10</sub> concentrations even reached above 300  $\mu$ g/m<sup>3</sup>.

Guttikunda and Jawahar 2014<sup>3</sup>, conducted a study to understand pollution contribution within city of Patna for base year 2012. They found that overall contribution to the  $PM_{10}$  pollution load within the city varied from source to source. They found that the transport, road dust, domestic sources, generator sets, open waste burning, manufacturing industry, brick kilns and construction activities respectively contributed approximately 13-22%, 14-19%, 12-16%, 5-6%, 9-11%, 5-10%, 11-29% and 8-13% to the total  $PM_{10}$  emission load in the city. It is important to note that emissions within the city are different from contributions to ambient levels, as a large part of the pollution in ambient air comes from outside the city. The same paper also mentioned that the Greater Patna area has 2600 premature deaths, 2,00,000 asthma attacks and 1100 cardiac admissions due to exposure to ambient air pollution levels in Patna in 2012.

### **W** PM<sub>10</sub> CONCENTRATIONS ACROSS CITIES IN BIHAR DURING 2015



<sup>3</sup> Guttikunda, S.K. and P. Jawahar, 2014. "Characterizing Patna's Ambient Air Quality and Assessing Opportunities for Policy Intervention", UrbanEmissions.Info (Ed.), New Delhi, India, http:// shaktifoundation.in/wpcontent/uploads/2014/02/ AQM-in-Patna-2014-07-15-Final-Report.pdf

PATNA AND MUZZAFARPUR IN BIHAR RECORDED PM<sub>10</sub> LEVELS 3 TIMES THE NAAQS ANNUAL LIMIT SET BY CPCB



CHANDIGARH RECORDED PM<sub>10</sub> LEVELS 4 TIMES THE ANNUAL LIMIT SET BY WHO The assessment of Air Pollution levels for Chandigarh highlighted that  $PM_{10}$  concentrations are 85 µg/m<sup>3</sup> for year 2015, which were at higher than the NAAQS annual limit set by CPCB and about 4 times the annual limit set by WHO for  $PM_{10}$ . Detailed observation of the data suggests that the  $PM_{10}$  levels has been very high all around the year for 2015 for Chandigarh with October to February being the severely polluted months when the  $PM_{10}$  concentrations even reached above 100 µg/m<sup>3</sup>.

PM10 CONCENTRATIONS IN CHANDIGARH DURING 2015



Chaudhary et al., 2004<sup>4</sup> carried out source apportionment study for Chandigarh in 2001, which attributed 24% of total primary  $PM_{2.5}$  pollution levels from fossil fuel combustion (coal, diesel, and gasoline) and 9 % to the biomass combustion in Chandigarh. The same study also highlighted that during the summer time secondary particulate formation and oil (Diesel & Petrol) consumption were the biggest contributors to the overall particulate matter concentrations.



<sup>4</sup> Chowdhury, Zohir, Zheng, Mei and Russell, Armistead, 2004, "Source Apportionment and Characterization of Ambient Fine Particles in Delhi, Mumbai, Kolkata, and Chandigarh" Georgia Institute of Technology, Atlanta Georgia, https://smartech. gatech.edu/bitstream/ handle/1853/10872/E-20-H76\_736587.pdf The assessment of Air Pollution levels for cities in Chhattisgarh highlighted that  $PM_{10}$  concentrations in four cities where the data was available from pollution control board were higher than the annual average of 60 µg/m<sup>3</sup> as prescribed under NAAQS.  $PM_{10}$  concentrations in Bhilai, Korba, Raipur and Siltara were respectively 109, 66, 138 and 145 µg/m<sup>3</sup> for year 2015-2016.



**V** PM<sub>10</sub> CONCENTRATIONS ACROSS CITIES IN CHHATTISGARH DURING APRIL 2015 - MARCH 2016

Detailed observation of the data suggests that the  $PM_{10}$  levels has been hazardous and very high all around the year for 2015-2016 for all the cities except Korba which shows PM10 levels close to NAAQS throughout the year.

Korba has been declared 5th in the list of the 24 most critically polluted areas in the country<sup>5</sup> by CPCB. The same report also highlighted Coal Based Power Plants and Smelter Plants as major sources of air pollution along with fugitive emissions from coal mines in the area.

Deshmukh et al., 2013<sup>6</sup> highlighted vehicular growth, coal burning in steel industry and thermal power plants, other industrial activities, biomass burning, brick kilns and domestic fuel use as the major factors contributing to air pollution in Raipur, although the contribution to total pollution from respective sources has not been attributed.

### PM<sub>10</sub> CONCENTRATIONS ACROSS CITIES IN CHHATTISGARH DURING APRIL 2015 - MARCH 2016



<sup>5</sup> http://cpcb.nic.in/ divisionsofheadoffice/ess/ Korba.pdf
<sup>6</sup> http://link.springer.com. sci-hub.cc/article/10.1007/ s11869-011-0169-9

DETAILED OBSERVATION OF THE DATA SUGGESTS THAT THE PM<sub>10</sub> LEVELS HAS BEEN HAZARDOUS AND VERY HIGH ALL AROUND THE YEAR FOR 2015-2016 FOR MOST CITIES



**AIR POLLUTION** LEVELS FOR DELHI HIGHLIGHTED THAT PM<sub>10</sub> CONCENTRA-**TIONS ARE 268** µG/M<sup>3</sup> FOR YEAR 2015. WHICH WERE AT 4.5 TIMES **HIGHER THAN** THE NAAQS ANNUAL LIMIT SET BY CPCB AND ABOUT **13 TIMES THE** ANNUAL LIMIT SET BY WHO

The assessment of Air Pollution levels for Delhi highlighted that  $PM_{10}$  concentrations are 268 µg/m<sup>3</sup> for year 2015, which were at 4.5 times higher than the NAAQS annual limit set by CPCB and about 13 times the annual limit set by WHO for  $PM_{10}$ . Detailed observation of the data suggests that the  $PM_{10}$  levels has been very high all around the year for 2015 for Delhi with October to February being the severely polluted months when the  $PM_{10}$  concentrations even touched 500 µg/m<sup>3</sup>.

It has been long established as the pollution capital of the world by WHO, 2014<sup>7</sup> and most of the debate on air pollution in India are still centered around Delhi. Various studies have been done to understand the source contribution to Delhi's Air pollution, the most recent being the study by IIT Kanpur<sup>8</sup>. According to the study, "The total PM<sub>10</sub> emission load in the city is estimated to be 143 t/d (based on average annual activity data). The top four contributors to PM<sub>10</sub> emissions are road dust (56%), concrete batching (10%), industrial point sources (10%) and vehicles (9%); these are based on annual emissions". According to the study control measures applied at the power plants within 300 KM radius of Delhi will "effectively reduce  $PM_{10}$  and  $PM_{25}$  concentration by about 62 µg/m<sup>3</sup> and 35 µg/m<sup>3</sup> respectively. Similarly 90% reduction in NO, can reduce the nitrates by 45%. This will effectively reduce  $PM_{10}$  and  $PM_{2.5}$  concentration by about 37  $\mu$ g/m<sup>3</sup> and 23 µg/m³ respectively. It implies that control of SO<sub>2</sub> and NO<sub>x</sub> from power plants can reduce PM<sub>10</sub> concentration approximately by 99 µg/m<sup>3</sup> and for PM<sub>25</sub> the reduction could be about 57 µg/m<sup>3</sup>."

Furthermore, the study highlighted that, "The contribution of the biomass burning in winter is quite high at 17% (for  $PM_{10}$ ) [and] 26% (for  $PM_{2.5}$ ). Biomass burning is prohibited in Delhi and it is not a common practice at a large scale. The enhanced concentration of PM in October-November is possibly due to the effect of post-monsoon crop residue burning (CRB). It can be seen that the biomass contribution in  $PM_{10}$  in the month of November could be as high as 140 µg/m<sup>3</sup> and about 120 µg/m<sup>3</sup> for  $PM_{2.5}$  (mean of contribution in entire winter season: 97 µg/m<sup>3</sup> and 86 µg/m<sup>3</sup> respectively). In all likelihood, the PM from biomass burning is contributed from CRB [crop residue burning] prevalent in Punjab and Haryana in winter".





<sup>7</sup> http://www.who.int/phe/ health\_topics/outdoorair/ databases/cities-2014/en/ <sup>8</sup> http://delhi.gov.in/DoIT/ Environment/PDFs/Final\_ Report.pdf The assessment of Air Pollution levels for cities in Gujarat highlighted that  $PM_{10}$  concentrations in five cities where the data was available from pollution control board were higher than the annual average of 60 µg/m<sup>3</sup> as prescribed under NAAQS.  $PM_{10}$  concentrations in Bhavnagar, Gandhi Nagar, Jamnagar, Rajkot and Vadodara were respectively 91, 82, 88, 86 and 86 µg/m<sup>3</sup> for financial year 2014-2015.

### V PM10 CONCENTRATIONS ACROSS CITIES IN GUJARAT DURING APRIL 2014 - MARCH 2015



Detailed observation of the data suggests that the  $PM_{10}$  levels have been very high all around the year for 2014-2015 for all the cities in Gujarat.

Guttikunda and Jawahar, 2011<sup>9</sup> estimated that power plants contribute to 39% of PM<sub>10</sub> pollution load in Ahmedabad and 31% to PM<sub>2.5</sub>, with transportation contributing to 16% and 27% to PM<sub>10</sub> and PM<sub>2.5</sub> respectively.

In Surat and Rajkot the contribution of transportation to overall PM<sub>10</sub> were 30% & 26% and PM<sub>2.5</sub> concentration were 42% & 40% respectively. Contribution from industrial sector to PM<sub>10</sub> levels of 12% and 25% and PM<sub>2.5</sub> levels of 20% and 36% in Surat and Rajkot respectively.

### PM<sub>10</sub> CONCENTRATIONS ACROSS CITIES IN GUJARAT DURING APRIL 2014- MARCH 2015



<sup>9</sup> Guttikunda and Jawahar, 2011, "Simple Interactive Models for Better Air Quality, Urban Air Pollution Analysis in India", UrbanEmissions.Info, New Delhi, India, http://urbanemissions.info/ wp-content/uploads/docs/ SIM-37-2012.pdf

DETAILED PM<sub>10</sub> CONCENT-RATIONS IN BHAVNAGAR, GANDHI NAGAR, JAMNAGAR, RAJKOT AND VADODHRA WERE RESPECTIVELY 91, 82, 88, 86 AND 86µG/ M<sup>3</sup> FOR YEAR 2014-2015







CONTRIBUTION OF MAJOR SOURCES TO PM<sub>10</sub> EMISSIONS INVENTORY



CONTRIBUTION OF MAJOR SOURCES TO PM<sub>2.5</sub> EMISSIONS INVENTORY



CON 1%

RD 8%

TR 42%



RD 30%

11

The assessment of Air Pollution levels for cities in Haryana highlighted that  $PM_{_{10}}$  concentrations in four cities where the data was available from pollution control board were higher than the annual average of 60 µg/m<sup>3</sup> as prescribed under NAAQS.  $PM_{_{10}}$  concentrations in Faridabad, Gurgaon, Panchkula and Rohtak were respectively 240, 129, 92 and 92 µg/m<sup>3</sup> for year 2015.

### V PM10 CONCENTRATIONS ACROSS CITIES IN HARYANA DURING 2015



Detailed observation of the data suggests that the PM<sub>10</sub> levels have been hazardous and very high all around the year for 2015 for all the cities wherever data is available Faridabad and Gurgaon being the places which are severely polluted along with all other places having higher PM<sub>10</sub> concentrations reaching above NAAQS.

### ▼ PM<sub>10</sub> CONCENTRATIONS ACROSS CITIES IN HARYANA DURING 2015



PM<sub>10</sub> LEVELS HAS BEEN HAZARDOUS ALL AROUND THE YEAR FOR 2015 WITH FARIDABAD AND GURGAON SHOWING SEVERE POLLUTION LEVELS



RANCHI, KUSUNDA, JHARIA AND BASTACOLA ARE THE PLACES WHICH ARE SEVERELY POLLUTED WITH PM<sub>10</sub> LEVELS BEING ABOVE 200 µG/ M<sup>3</sup> ALL YEAR LONG

<sup>10</sup> Pandey et al., 2014, "Assessment of air pollution around coal mining area: Emphasizing on spatial distributions, seasonal variations and heavy metals, using cluster and principal component analysis", Atmospheric Pollution Research, 5, 79-86, http://www.sciencedirect. com/science/article/pii// S1300104215303445 The assessment of Air Pollution levels for cities in Jharkhand highlighted that  $PM_{10}$  concentrations in all 10 locations where the data was available from pollution control board were higher than the annual average of 60 µg/m<sup>3</sup> as prescribed under NAAQS.  $PM_{10}$  concentrations in Jharia, Ranchi, Kusunda and Bastacola were respectively 228, 216, 214 and 211 µg/m<sup>3</sup> for year 2015.

V PM<sub>10</sub> CONCENTRATIONS ACROSS CITIES IN JHARKHAND DURING 2015



Detailed observation of the data suggests that the  $PM_{10}$  levels has been hazardous and very high all around the year for 2015 for all the cities wherever data is available. Ranchi, Kusunda, Jharia and Bastacola are the places which are severely polluted with  $PM_{10}$  levels being above 200 µg/m<sup>3</sup> all the time during the year along with all other places having higher  $PM_{10}$  concentrations reaching above NAAQS.

Pandey et al., 2014<sup>10</sup> highlighted that the major causes of air pollution in area near Jharia including Bastacola, Dhansar, Ena, CIMFR are coal mining, mine fires, vehicular pollution, windblown dust through unpaved roads and over burdens in the area.

**PM**<sub>10</sub> CONCENTRATIONS ACROSS CITIES IN JHARKHAND DURING 2015



# The the way average and the second se

The assessment of Air Pollution levels for cities in Karnataka highlighted that  $PM_{10}$  concentrations in 9 towns and cities out of the 21 where data was available from pollution control board were higher than the annual average of 60 µg/m<sup>3</sup> as prescribed under NAAQS.  $PM_{10}$  concentrations in Davanagere, Bangalore, Tumkur, Raichur and Hubli were respectively 109, 119, 118, 87 and 80 µg/m<sup>3</sup> for year 2015-2016.

### **V** PM<sub>10</sub> CONCENTRATIONS ACROSS CITIES IN KARNATAKA DURING APRIL 2015 - MARCH 2016



TERI 2010<sup>11</sup> estimated emission load and source contribution to pollution for Bangalore and estimated that, "At the city level, the major sources of PM<sub>10</sub> emissions are transport (42%), road dust resuspension (20%), construction (14%), industry (14%), DG set (7%) and domestic (3%). Likewise, at the city level, major sources of NO<sub>x</sub> are transport (68%), DG set (23%), industry (8%) and domestic (1%). In case of SO<sub>2</sub>, at the city level, industry (56%0, DG set (23%) and transport (16%) are the major sources." The same report through source apportionment also highlighted:

- "Share of transportation increases from 19% in PM<sub>10</sub> to 50% in PM<sub>2.5</sub>, depicting dominance of finer particles in the vehicular exhaust.
- Share of anthropogenic sources has been eclipsed by dust contribution, in case of PM<sub>10</sub>. However, PM<sub>2.5</sub> clearly shows significant contribution of anthropogenic sources.
- DG sets have emerged out as an important source of air pollution. Their contribution is 13% & 25% in PM<sub>10</sub> and PM<sub>25</sub>, respectively.
- Contribution of industries to the particulate matter is low in Bangalore, primarily due to absence of any large scale air polluting unit. However, their contribution in the industrial zone (Peenya) is high.
- Share of secondary particulates is higher in PM<sub>2.5</sub> than PM<sub>10</sub>, depicting their finer size."

PM<sub>10</sub> CONCENTRA-TIONS IN 9 TOWNS/CITIES OUT OF 21 WERE HIGHER THAN THE ANNUAL AVERAGE OF 60 µG/M<sup>3</sup> AS PRESCRIBED UNDER NAAQS

<sup>11</sup> Air quality assessment, emission inventory and source apportionment study for Bangalore city: Final report, New Delhi: The Energy Resources Institute, 186 pp. [Project Report No. 2004EE28], http://www.cpcb. nic.in/Bangalore.pdf



FIGURE: PERCENTAGE SHARE OF DIFFERENT SOURCES IN TOTAL PM10 AND NOX EMISSION LOADS

FIGURE: COMPARISON OF PM10 AND PM2.5 SOURCE CONTRIBUTION IN BANGALORE CITY (AVERAGE OF 3 SEASONS)



The assessment of Air Pollution levels for cities in Madhya Pradesh highlighted that  $PM_{10}$  concentrations in all 4 cities where the data was available from pollution control board were higher than the annual average of 60 µg/m<sup>3</sup> as prescribed under NAAQS. PM<sub>10</sub> concentrations in Bhopal, Satna, Singrauli and Gawalior were respectively 158, 88, 93 and 128 µg/m<sup>3</sup> for 2015.

V PM<sub>10</sub> CONCENTRATIONS ACROSS CITIES IN MADHYA PRADESH DURING 2015



The data suggests that the  $PM_{10}$  levels have been hazardous and very high all around the year for 2015 for all the cities, with January to May being the most severely polluted months. Highest recorded monthly average  $PM_{10}$  concentration exceeded 200 µg/m<sup>3</sup> for Gwalior, in April.

The average PM<sub>10</sub> levels in Indore between September 2009 and June 2010 were 195  $\mu$ g/m<sup>3</sup> according to a study by MPPCB that also mentioned vehicular emissions, airborne dust, and industrial emissions as major emission load contributors to PM<sub>10</sub> in Indore by MPPCB<sup>12</sup>, in Comprehensive Environment Pollution Abatement action Plan for Critically Polluted area Indore.





<sup>12</sup> Madhya Pradesh Pollution Control Board, "Comprehensive Environment Pollution Abatment action Plan for Critically Polluted area Indore", http://cpcb.nic.in/ divisionsofheadoffice/ess/F-Indore.pdf

VEHICULAR EMISSIONS, AIR BORN DUST AND INDUSTRIAL EMISSIONS ARE MAJOR EMISSION LOAD CONTRIBUTORS TO PM<sub>10</sub> IN INDORE

MAHARASHTRA



IN MUMBAI, THE MAIN CONTRIBUTORS FOR PM, LIKE POWER PLANT, OPEN BURNING, COMMERCIAL FOOD SECTOR, AND ROAD TRANSPORT

 <sup>13</sup> Maji, et al., 2016, "Human health risk assessment due to air pollution in 10 urban cities in Maharashtra, India", Cogent Environmental Science, 2(1), 1193110, https:// www.cogentoa.com/article/10.1080 /23311843.2016. 1193110.pdf
 <sup>14</sup> CPCB. (2010). Air quality assessment, emissions inventory and source apportionment studies: Mumbai [online]. Central Pollution Control Board. Retrieved November 23, 2014, from http://cpcb.nic.in/ Mumbai-report.pdf
 <sup>15</sup> MPCB. (2010). Action plane

for industrial cluster: Chandrapur. Maharashtra Pollution Control Board. Retrieved February 14, 2015, from http://cpcb.nic. in/divisionsofheadoffice/ ess/ Action%20plan%20CEPI-Chandrapur.pdf <sup>16</sup> ARAI. (2010). Air quality

<sup>16</sup> ARAI. (2010). Air quality monitoring and emission source apportionment study for city of Pune [online]. Pune: The Automotive Research Association of India, [ARAI/ IOCLAQM/R-12/2009-10]. Retrieved March 21, 2015, from http://cpcb. nic.in/Pune.pdf The assessment of Air Pollution levels for cities in Maharashtra highlighted that  $PM_{10}$  concentrations in every single one of the 25 cities where the data was available from pollution control board were higher than the annual average of 60 µg/m<sup>3</sup> as prescribed under NAAQS.  $PM_{10}$  concentrations in Nanded, Taloja, Akola, Jalna, Thane, Mumbai and Chandrapur were respectively 162, 126, 128, 118, 118, 107 and 103 µg/m<sup>3</sup> for year 2015.



▼ PM<sub>10</sub> CONCENTRATIONS ACROSS CITIES IN MAHARASHTRA DURING 2015

Detailed observation of the data suggests that the  $PM_{10}$  levels were hazardous and very high all around the year for 2015 for all the cities except for the monsoon months. October to January were the most severely polluted months, with average  $PM_{10}$  concentrations even exceeding 150 µg/m<sup>3</sup>.

Maji et al., 2016<sup>13</sup> mentioned, "In Mumbai, different combustion processes are the main contributors for PM, like power plant, open burning, commercial food sector, and road transport, and they contribute 37, 24, 18, and 10%, respectively. A study by National Environmental Engineering Research Institute (NEERI) found that open burning and landfill fires of municipal solid waste (MSW) were a major source of air pollution in Mumbai (CPCB, 2010<sup>14</sup>). The survey results show that about 2% of total generated MSW is burnt on the streets and slum areas, 10% of the total generated MSW is burnt in landfills by management authorities or due to accidental landfill fires, thereby emitting large amounts of CO, PM, carcinogenic HC, and NO. In Chandrapur, primary sources of high critical pollutant concentration (i.e. SPM, PM<sub>10</sub>, SO<sub>2</sub>, and NO<sub>2</sub>) are open coal mining, lime stone mining, fluoride mining, cement industry, thermal power plant, road dust, natural burning of coal, and domestic coal burning by local people for cooking (MPCB, 2010<sup>15</sup>). Within the city of Pune, highest shares of emissions of PM<sub>10</sub> come from road dust (61%), vehicular sources (18%), industry (1.25%), vegetative burning, and solid fuels burning. For NO<sub>2</sub> emissions, major contributions are from vehicles (95%), industries (2%), and domestic and commercial fuel burning (3%) (ARAI, 2010<sup>16</sup>), due to absence of major industrial emitters within the city boundaries. Vehicles and industries contribute to high SO, emission loads due to fuel burning. Main cause of air pollution in Nashik city is due to plastic industry, food

## processing factories, and domestic waste burning. Till December 2013, there are 1.13 million registered vehicles in the city, constituting a major source of pollution (TI, 2014<sup>17</sup>)".

Similarly, Kothai et al., 2008<sup>18</sup> carried out a source apportionment study for Navi Mumbai and estimated that "percentage contribution of soil, twostroke emission with fugitive dust, industrial emission, motor vehicles and sea salt to the average fine mass concentration was 3%, 18%, 23%, 29% and 9%, respectively"

### ▼ PM<sub>10</sub> CONCENTRATIONS ACROSS CITIES IN MAHARASHTRA DURING 2015



<sup>17</sup> TI. (2014). Vehicles in Nashik region rise by nearly 10% [online]. The Times of India. Retrieved January 23, 2015, from http://timesofindia. indiatimes.com/city/ nashik/Vehicles-in-Nashikregion-rise-by-nearly-10/ articleshow/29924015.cms Tominz, R., Mazzoleni, B., & Daris, F.
<sup>18</sup> Kothai, et al., 2008, "Source

<sup>16</sup> Kothai, et al., 2008, "Source Apportionment of Coarse and Fine Particulate Matter at Navi Mumbai, India", Aerosol and Air Quality Research, Vol. 8, No. 4, pp. 423-436, http://aaqr.org/VOL8\_No4\_ December2008/5\_AAQR-08-07-OA-0027\_423-436.pdf



The assessment of Air Pollution levels for cities in Odisha highlighted that  $PM_{10}$  concentrations in Keonjhar and Rourkela were higher than the annual average of 60 µg/m<sup>3</sup> as prescribed under NAAQS.  $PM_{10}$  concentrations in Berhampur were found to be below the NAAQS for year 2015.



PM<sub>10</sub> CONCENTRATIONS ACROSS CITIES IN ODISHA DURING 2015

Detailed observation of the data suggests that the  $PM_{10}$  levels have been very high all around the year for 2015 at Rourkela whereas for Keonjhar and Berhampur the pollution levels were higher in months of September to January.

SPCB Odisha, 2010<sup>19</sup> carried out a study to understand the emission loading and pollution contribution in Angul-Talcher area and found out that the average PM<sub>10</sub> levels were between 85-110 and, "The major industries contributing to air pollution are thermal power plants of NALCO and NTPC and Smelter of NALCO besides sponge iron plants like BRG Iron & Steel and Bhusan Steel Ltd. Apart from the above sources the fugitive emissions from the burning of wood and coal as domestic fuel, transportation of vehicles and emissions from the mines also contribute to air pollution in the area."





SPCB ORISSA. 2010 CARRIED **OUTA** STUDY TO UNDERSTAND THE EMISSION LOADING AND POLLUTION CONTRIBUTION IN ANGUL-TALCHER AREA AND FOUND OUT THAT THE AVERAGE PM<sub>10</sub> LEVELS WERE **BETWEEN 85-**110

<sup>19</sup> SPCB Orissa, 2010, "Action plan for abatement of pollution in critically polluted industrial clusters (Angul-Talcher area), http://cpcb.nic. in/divisionsofheadoffice/ess/ Action%20Plan%20Angul-Talcher.pdf

# The assessment of Air Pollution levels for cities in Punjab highlighted that $PM_{10}$ concentrations in all 14 cities where the data was available from pollution control board were higher than the annual average of 60 µg/m<sup>3</sup> as prescribed under NAAQS. PM<sub>10</sub> concentrations in Amritsar, Jalandhar, Ludhiana, Mandi Gobindgarh, Khanna and Bhatinda were respectively 184, 151, 139, 130, 122 and 111 µg/m<sup>3</sup> for year 2015.

### ▼ PM<sub>10</sub> CONCENTRATIONS ACROSS CITIES IN PUNJAB DURING 2015



Detailed observation of the data suggests that the PM<sub>10</sub> levels were hazardous and very high all around the year for 2015 for all the cities with October to January being the severely polluted months. Highest monthly average PM<sub>10</sub> levels, exceeding 200  $\mu$ g/m<sup>3</sup> were recorded in Jalandhar in December and in Amritsar in April-May.

"State wise emission assessment study (TERI, 2015<sup>20</sup>) shows sector-wise emissions for the Punjab state (Figure). Industrial combustion contributes 47% of the PM<sub>10</sub> emissions followed by brick-making and open burning. Almost 56 % of NO<sub>x</sub> emissions are contributed by transport sector in Punjab including both road transport and mode of transportation used during agricultural activities."

### ▼ PM<sub>10</sub> CONCENTRATIONS ACROSS CITIES IN PUNJAB DURING 2015



<sup>20</sup> TERI, 2015. "Air pollution in Punjab", New Delhi: The Energy and Resources Institute. 16 pp., http://www.teriin.org/projects/green/pdf/Punjab-Air-quality.pdf

INDUSTRIAL COMBUSTION CONTRIBUTES 47% OF THE PM<sub>10</sub> EMISSIONS FOLLOWED BY BRICK AND OPEN BURNING



FIGURE: SECTOR-WISE EMISSIONS FOR CRITERIA POLLUTANTS FROM DIFFERENT SOURCES IN PUNJAB IN 2010

| AGRICUTURE   | IND_COMB      |
|--------------|---------------|
| TRANSPORT    | RESIDENTIAL   |
| OPEN BURNING | - <b>-</b>    |
| BDICK        | NON-ROAD      |
| DRICK        | TRANSPORT     |
| CEMENT       | ROAD TRANSPOR |
|              |               |
| IND_PROC     | POWER         |

20



PM<sub>10</sub> CONCEN-TRATIONS IN ALWAR, JAIPUR, KOTA AND UDAIPUR WERE RESPECTIVELY 227, 209, 134 AND 156 μG/M<sub>3</sub> FOR YEAR 2015 The assessment of Air Pollution levels for cities in Rajasthan highlighted that  $PM_{10}$  concentrations in 4 cities where the data was available from pollution control board were higher than the annual average of 60 µg/m<sup>3</sup> as prescribed under NAAQS.  $PM_{10}$  concentrations in Alwar, Jaipur, Kota and Udaipur were respectively 227, 171, 134 and 156 µg/m<sup>3</sup> for year 2015.

▼ PM<sub>10</sub> CONCENTRATIONS ACROSS CITIES IN RAJASTHAN DURING 2015



Detailed observation of the data suggests that the  $PM_{10}$  levels were hazardous and very high all around the year for 2015 for all the cities, with the pollution moderating somewhat in most cities in the summer months. October to January were the most severely polluted months, with  $PM_{10}$  concentrations reaching above200 µg/m<sup>3</sup>.

### PM<sub>10</sub> CONCENTRATIONS ACROSS CITIES IN RAJASTHAN DURING 2015



The assessment of Air Pollution levels for cities in Tamilnadu highlighted that  $PM_{_{10}}$  concentrations in Chennai were higher than the annual average of 60 µg/m<sup>3</sup> as prescribed under NAAQS. Detailed observation of the data suggests that the  $PM_{_{10}}$  levels has been high all around the year for 2015 for Chennai.



No source apportionment studies were available for Tamil Nadu. Within the city of Chennai, CPCB,  $2011^{21}$  highlighted that the share of vehicular exhaust emissions was 14%, industrial sector 2%, DG sets less than 1%, construction activities approx. 9% of total PM<sub>10</sub> emission load with nearly 72% contribution from fugitive dust emissions.

### **PM**<sub>10</sub> CONCENTRATIONS ACROSS CITIES IN TAMIL NADU DURING 2015



EMISSION INVENTORY PM<sub>10</sub> CHENNAI



<sup>21</sup> CPCB, 2011, "Air quality monitoring, emission inventory and source apportionment study for Indian cities: National Summary Report", http:// www.moef.nic.in/downloads/ public-information/Rpt-airmonitoring-17-01-2011.pdf

INDUSTRIAL COMBUSTION CONTRIBUTES 47% OF THE PM<sub>10</sub> EMISSIONS FOLLOWED BY BRICK AND OPEN BURNING

TELANGANA



The assessment of Air Pollution levels for cities in Telangana highlighted that  $PM_{10}$  concentrations in 4 cities where the data was available from pollution control board were higher than the annual average of 60 µg/m<sup>3</sup> as prescribed under NAAQS.  $PM_{10}$  concentrations in Mahboobnagar, Hyderabad, Karim Nagar and Khammam were respectively 108, 99, 65 and 60 µg/m<sup>3</sup> for year 2015.

### PM<sub>10</sub> CCONCENTRATIONS ACROSS CITIES IN TELANGANA DURING 2015



Gummeneni, et al.,  $2011^{22}$  conducted a source apportionment study for Hyderabad and concluded as, "Results of CMB Model showed that major source throughout the study period were re-suspended dust (40%) for PM<sub>10</sub> and 31% for PM<sub>2.5</sub>. Vehicles has also contributed significant influence on particulate matter levels at the site for both PM<sub>10</sub> (22%) and PM<sub>2.5</sub> (31%). Other major identified sources of particulate matter were industrial emissions, combustion and refuse burning.

### FIGURE: SOURCE CONTRIBUTION TO PM<sub>10</sub> AND PM<sub>2.5</sub>



<sup>22</sup> Gummeneni, S., et al., Source apportionment of particulate matter in the ambient air of Hyderabad city, India, Atmos. Res. (2011), doi:10.1016/j. atmosres.2011.05.002

"RESULTS OF CMB MODEL SHOWED THAT MAJOR SOURCE THROUGHOUT THE STUDY PERIOD WERE RESUSPENDED DUST (40%) FOR PM<sub>10</sub> AND 31% FOR PM<sub>2.5</sub>"





23, 24, 25 Footnotes on page 25

The assessment of Air Pollution levels for cities in Uttar Pradesh highlighted that  $PM_{10}$  concentrations in all 20 cities<sup>23</sup> where the data was available from pollution control board were higher than the annual average of 60 µg/m<sup>3</sup> as prescribed under NAAQS.  $PM_{10}$  concentrations in Gaziabad, Braeli, Allahabad, Kanpur, Agra, Lucknow, Varanasi<sup>24</sup> (Average of  $PM_{10}$  levels from October 2015 to September 2016 is 228 µg/m<sup>3</sup> for Varanasi) and Sonebhadra were respectively 258, 240, 250, 201, 186, 169, 145 and 132 µg/m<sup>3</sup> for year 2015.

PM<sub>10</sub> CONCENTRATIONS ACROSS CITIES IN UTTAR PRADESH DURING 2015



Detailed observation of the data suggests that the  $PM_{10}$  levels has been hazardous and very high all around the year for from October 2015 to September 2016 for all the cities, with October to February being the severely polluted months when the  $PM_{10}$  concentrations even reached near to 400 µg/m<sup>3</sup>. Sharma, 2010<sup>25</sup> carried out a source apportionment study for Kanpur and concluded as, "There are several important sources of  $PM_{10}$  in the city including industrial point sources (26%), industry area source (7 %), vehicles (21%), domestic fuel burning (19%) paved and unpaved road (15%), garbage burning (5%) and rest others." For NO<sub>x</sub> emissions "nearly 50% of emissions are attributed to vehicles that occur at ground level, probably making it the most important pollutant. Vehicle sources are followed by industrial point and area sources (42%), DG sets (5%) and domestic sources and rest others (3%)".

### PM<sub>10</sub> CONCENTRATIONS ACROSS CITIES IN UTTAR PRADESH DURING OCTOBER 2015 - SEPTEMBER 2016



UTTARAKHAND



The assessment of Air Pollution levels for cities in Uttarakhand highlighted that  $PM_{10}$  concentrations in all 6 cities where the data was available from pollution control board were higher than the annual average of 60 µg/m<sup>3</sup> as prescribed under NAAQS.  $PM_{10}$  concentrations in Deharadun, Haldwani, Haridwar, Kashipur, Rishikesh and Rudrapur were respectively 186, 139, 123, 107, 121 and 124 µg/m<sup>3</sup> for year 2015.

### **PM**<sub>10</sub> CONCENTRATIONS ACROSS CITIES IN UTTARAKHAND DURING 2015



Detailed observation of the data suggests that the  $PM_{10}$  levels has been hazardous and very high all around the year for from October 2015 to September 2016 for all the cities with October to February being the severely polluted months when the  $PM_{10}$  concentrations even reached near to 200 µg/m<sup>3</sup>.

### **PM**<sub>10</sub> CONCENTRATIONS ACROSS CITIES IN UTTRAKHAND DURING 2015



FOR ALL THE CITIES WITH OCTOBER TO FEBRUARY BEING THE SEVERELY POLLUTED MONTHS WHEN THE PM<sub>10</sub> CONCEN-TRATIONS REACHED NEAR TO 200 µG/M<sub>3</sub>

### Page 24 footnotes

<sup>23</sup> Data for Firozabad is from August 2014 to July 2015 <sup>24</sup> Average PM<sub>10</sub> concentration from October 2015 to September 2016 is 228 µg/m<sup>3</sup> whereas for 2015 calendar year it was shown to be 145 µg/m<sup>3</sup> by the UPPCB data collected through RTI. <sup>25</sup> Sharma, 2010, "Air Quality Assessment, Emissions Inventory and Source Apportionment Studies for Kanpur City", IIt Kanpur, Submitted to CPCB, http:// cpcb.nic.in/Kanpur.pdf

### GOVERNMENT INITIATIVE

It requires a system approach to understand pollution levels regularly and take action. The first step in the direction is having a robust monitoring of air quality across the country to know information in real time and using the data to arrive at strategies that would protect public health and reduce pollution levels. The strategies to reduce pollution should become an action plan which is time bound and has targets and penalties.



Public participation is critical in reducing air pollution. Our choices for electricity and transportation could play a major role in managing pollution levels in many parts of the country. Efforts should be made in key areas such as:



### COMPARISON OF FACTS ON AIR POLLUTION IN THE WORLD'S FOUR MAJOR ECONOMIES26

|                                                                                                                             | CHINA                                                                                                                                                                                           | INDIA                                                                                                                                                                                                                                                    | U.S.                                                                                                                                                                                                              | EU                                                                                                                                                                   |
|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Change in<br>satellite-based<br>PM <sub>2.5</sub> levels<br>from 2010 to<br>2015                                            | -17%                                                                                                                                                                                            | +13%                                                                                                                                                                                                                                                     | -15%                                                                                                                                                                                                              | -20% (from 2005<br>to 2013)                                                                                                                                          |
| PM <sub>2.5</sub> trend                                                                                                     | Falling since<br>2011; 2015 was<br>the best on<br>record                                                                                                                                        | Increasing steadily<br>for past 10 years;<br>2015 was the worst<br>year on record                                                                                                                                                                        | Falling since measurements started                                                                                                                                                                                | Falling since measurements started                                                                                                                                   |
| PM <sub>2.5</sub> in capital<br>city, annual<br>(μg/m³)                                                                     | 81                                                                                                                                                                                              | 128                                                                                                                                                                                                                                                      | 12                                                                                                                                                                                                                | 18                                                                                                                                                                   |
| PM <sub>2.5</sub> air<br>quality<br>standard,<br>annual (µg/m³)                                                             | 35                                                                                                                                                                                              | 40                                                                                                                                                                                                                                                       | 15                                                                                                                                                                                                                | 25 (from 2020, 20)                                                                                                                                                   |
| Deaths per<br>day from air<br>pollution in<br>2013                                                                          | 2,700                                                                                                                                                                                           | 1,800                                                                                                                                                                                                                                                    | 250                                                                                                                                                                                                               | 640                                                                                                                                                                  |
| Online PM <sub>2.5</sub><br>monitoring                                                                                      | 1,500 stations<br>in 900 cities &<br>towns                                                                                                                                                      | 39 stations in 23<br>cities (as of Feb<br>2016)                                                                                                                                                                                                          | 770 stations in 540 cities & towns                                                                                                                                                                                | 1,000 stations in 400 cities<br>& towns                                                                                                                              |
| Share of<br>thermal power<br>plants with<br>basic pollution<br>controls<br>(desulphu-<br>rization,<br>particle<br>controls) | 95%                                                                                                                                                                                             | 10%                                                                                                                                                                                                                                                      | 60%                                                                                                                                                                                                               | 75%                                                                                                                                                                  |
| Deadline<br>for meeting<br>national<br>air quality<br>standards                                                             | 2030; most key<br>cities have an<br>interim target<br>for 2017                                                                                                                                  | None                                                                                                                                                                                                                                                     | 2012; violating<br>areas are currently<br>implementing new<br>plans                                                                                                                                               | 25 by 2015<br>20 by 2020                                                                                                                                             |
| Consequences<br>for missing<br>targets                                                                                      | Promotion<br>of province<br>governors<br>depends on<br>meeting targets                                                                                                                          | None                                                                                                                                                                                                                                                     | States must adopt<br>emission reduction<br>measures into law<br>that are demonstrated<br>to enable meeting<br>targets; must account<br>for pollution transport<br>into downwind states;<br>periodic review        | Cities & countries face<br>legal action for not<br>meeting standards                                                                                                 |
| Coverage of<br>government<br>measures                                                                                       | National,<br>regional and<br>city-level action<br>plans with<br>measurable<br>5-year targets<br>National<br>emission<br>standards for<br>power plants,<br>industrial<br>sectors and<br>vehicles | Mainly action in<br>individual cities<br>with no measurable<br>targets<br>Recently introduced<br>India-wide emission<br>standards for<br>thermal power<br>plants; Introduction<br>of Bharat VI vehicle<br>emission norms is<br>proposed by April<br>2020 | National air<br>quality targets;<br>implementation plans<br>approved on federal<br>level and executed on<br>state level<br>National emission<br>standards for power<br>plants, industrial<br>sectors and vehicles | "Clean Air For Europe"<br>action plan<br>Europe-wide emission<br>standards for power<br>plants, industry and cars<br>Most countries and key<br>cities have own plans |

APPENDIX - I

 $PM_{10}$  LEVELS ACROSS INDIA (ANNUAL AVERAGE 2015<sup>27</sup>)

| СІТҮ        | STATE            | ANNUAL<br>AVERAGE | NAAQS<br>(ANNUAL) | TIME<br>FRAME | REFERENCE<br>SOURCE <sup>28</sup> |
|-------------|------------------|-------------------|-------------------|---------------|-----------------------------------|
| Delhi       | Delhi            | 268               | 60                | 2015          | 26                                |
| Gaziabad    | Uttar<br>Pradesh | 258               | 60                | 2015          | 26                                |
| Allahabad   | Uttar<br>Pradesh | 250               | 60                | 2015          | 22                                |
| Braeli      | Uttar<br>Pradesh | 240               | 60                | 2015          | 22                                |
| Faridabad   | Haryana          | 240               | 60                | 2015          | 26                                |
| Jharia      | Jharkhand        | 228               | 60                | 2015          | 26                                |
| Alwar       | Rajasthan        | 227               | 60                | 2015          | 26                                |
| Ranchi      | Jharkhand        | 216               | 60                | 2015          | 26                                |
| Kusunda     | Jharkhand        | 214               | 60                | 2015          | 26                                |
| Bastacola   | Jharkhand        | 211               | 60                | 2015          | 26                                |
| Kanpur      | Uttar<br>Pradesh | 201               | 60                | 2015          | 26                                |
| Patna       | Bihar            | 200               | 60                | 2015          | 26                                |
| Firozabad   | Uttar<br>Pradesh | 194               | 60                | 2015          | 22                                |
| Agra        | Uttar<br>Pradesh | 186               | 60                | 2015          | 22                                |
| Deharadun   | Uttrakhand       | 186               | 60                | 2015          | 23                                |
| Amritsar    | Punjab           | 184               | 60                | 2015          | 16                                |
| Gajrola     | Uttar<br>Pradesh | 177               | 60                | 2015          | 22                                |
| Jaipur      | Rajasthan        | 171               | 60                | 2015          | 18                                |
| Lucknow     | Uttar<br>Pradesh | 169               | 60                | 2015          | 22                                |
| Dhanbad     | Jharkhand        | 168               | 60                | 2015          | 7                                 |
| Mooradabad  | Uttar<br>Pradesh | 168               | 60                | 2015          | 22                                |
| Saharanpur  | Uttar<br>Pradesh | 168               | 60                | 2015          | 26                                |
| Khurja      | Uttar<br>Pradesh | 167               | 60                | 2015          | 26                                |
| Muzzafarpur | Bihar            | 164               | 60                | 2015          | 26                                |
| Nanded      | Maharashtra      | 162               | 60                | 2015          | 11                                |
| Gorakhpur   | Uttar<br>Pradesh | 162               | 60                | 2015          | 26                                |

<sup>27</sup> For few Cities where annual averages for 2015 were not easily available, lates data as well as for Gwalior data from 2014-2015 is included
 <sup>28</sup> Provided on after the current table

| CITY                | STATE              | ANNUAL<br>AVERAGE | NAAQS<br>(ANNUAL) | TIME<br>FRAME              | REFERENCE<br>SOURCE <sup>28</sup> |
|---------------------|--------------------|-------------------|-------------------|----------------------------|-----------------------------------|
| Mathura             | Uttar<br>Pradesh   | 162               | 60                | 2015                       | 26                                |
| Bhopal              | Madhya<br>Pradesh  | 158               | 60                | 2015                       | 10                                |
| Raebareli           | Uttar<br>Pradesh   | 157               | 60                | 2015                       | 26                                |
| Udaipur             | Rajasthan          | 156               | 60                | 2015                       | 26                                |
| Jodhpur             | Rajasthan          | 152               | 60                | 2015                       | 18                                |
| Jalandhar           | Punjab             | 151               | 60                | 2015                       | 17                                |
| Noida               | Uttar<br>Pradesh   | 148               | 60                | 2015                       | 26                                |
| Meerut              | Uttar<br>Pradesh   | 146               | 60                | 2015                       | 26                                |
| Siltara             | Chhattisgarh       | 145               | 60                | April 2015 -<br>March 2016 | 26                                |
| Varanasi            | Uttar<br>Pradesh   | 145               | 60                | 2015                       | 26                                |
| Ludhiana            | Punjab             | 139               | 60                | 2015                       | 17                                |
| Haldwani            | Uttrakhand         | 139               | 60                | 2015                       | 23                                |
| Raipur              | Chhattisgarh       | 138               | 60                | April 2015 -<br>March 2016 | 26                                |
| Nagaon              | Assam              | 137               | 60                | 2015                       | 2                                 |
| Panvel              | Maharashtra        | 137               | 60                | 2015                       | 11                                |
| Anpara              | Uttar<br>Pradesh   | 136               | 60                | 2015                       | 22                                |
| Talcher             | Odisha             | 135               | 60                | 2015                       | 15                                |
| Jamshedpur          | Jharkhand          | 134               | 60                | 2015                       | 26                                |
| Kota                | Rajasthan          | 134               | 60                | 2015                       | 26                                |
| Sonbhadar           | Uttar<br>Pradesh   | 132               | 60                | 2015                       | 26                                |
| Mandi<br>Gobindgarh | Punjab             | 130               | 60                | 2015                       | 16                                |
| Gurgaon             | Haryana            | 129               | 60                | 2015                       | 26                                |
| Akola               | Maharashtra        | 128               | 60                | 2015                       | 12                                |
| Gawalior            | Madhya<br>Pradesh  | 128               | 60                | August 2014<br>- July 2015 | 26                                |
| Taloja              | Maharashtra        | 126               | 60                | 2015                       | 11                                |
| Jammu               | Jammu &<br>Kashmir | 125               | 60                | 2015                       | 6                                 |

APPENDIX-I PM<sub>10</sub> LEVELS ACROSS INDIA (ANNUAL AVERAGE 2015<sup>27</sup>)

| СІТҮ               | STATE               | ANNUAL<br>AVERAGE | NAAQS<br>(ANNUAL) | TIME<br>FRAME              | REFERENCE<br>SOURCE <sup>28</sup> |
|--------------------|---------------------|-------------------|-------------------|----------------------------|-----------------------------------|
| Navi Mumbai        | Maharashtra         | 125               | 60                | 2015                       | 12                                |
| Rudrapur           | Uttrakhand          | 124               | 60                | 2015                       | 23                                |
| Haridwar           | Uttrakhand          | 123               | 60                | 2015                       | 23                                |
| Girdih             | Jharkhand           | 123               | 60                | 2015                       | 26                                |
| Byrnihat           | Meghalaya           | 122               | 60                | 2015                       | 13                                |
| Dimapur            | Nagaland            | 122               | 60                | 2015                       | 14                                |
| Khanna             | Punjab              | 122               | 60                | 2015                       | 16                                |
| Rishikesh          | Uttrakhand          | 121               | 60                | 2015                       | 24                                |
| Nalbari            | Assam               | 120               | 60                | 2015                       | 2                                 |
| Bangalore          | Karnataka           | 119               | 60                | 2015                       | 8                                 |
| Jhansi             | Uttar<br>Pradesh    | 119               | 60                | 2015                       | 22                                |
| Kala Amb           | Himachal<br>Pradesh | 118               | 60                | 2015                       | 5                                 |
| Tumku              | Karnataka           | 118               | 60                | April 2015 -<br>March 2016 | 9                                 |
| Jalna              | Maharashtra         | 118               | 60                | 2015                       | 11                                |
| Thane              | Maharashtra         | 118               | 60                | 2015                       | 11                                |
| Unnao              | Uttar<br>Pradesh    | 118               | 60                | 2015                       | 26                                |
| Ponta Sahib        | Himachal<br>Pradesh | 117               | 60                | 2015                       | 5                                 |
| Hazaribagh         | Jharkhand           | 112               | 60                | 2015                       | 26                                |
| Bhatinda           | Punjab              | 111               | 60                | 2015                       | 16                                |
| Vijaywada          | Andhra<br>Pradesh   | 110               | 60                | 2015                       | 1                                 |
| Patiala            | Punjab              | 110               | 60                | 2015                       | 16                                |
| West<br>Singhbhumi | Jharkhand           | 110               | 60                | 2015                       | 26                                |
| Bhilai             | Chhattisgarh        | 109               | 60                | 2015                       | 3                                 |
| Davanagere         | Karnataka           | 109               | 60                | 2015                       | 8                                 |
| Amravati           | Maharashtra         | 108               | 60                | 2015                       | 12                                |
| Jalgaon            | Maharashtra         | 108               | 60                | 2015                       | 12                                |
| Mahboobnagar       | Telangana           | 108               | 60                | 2015                       | 21                                |
| Mumbai             | Maharashtra         | 107               | 60                | 2015                       | 12                                |

| CITY       | STATE               | ANNUAL<br>AVERAGE | NAAQS<br>(ANNUAL) | TIME<br>FRAME              | REFERENCE<br>SOURCE <sup>28</sup> |
|------------|---------------------|-------------------|-------------------|----------------------------|-----------------------------------|
| Ullasnagar | Maharashtra         | 107               | 60                | 2015                       | 12                                |
| Kashipur   | Uttrakhand          | 107               | 60                | 2015                       | 24                                |
| Damtal     | Himachal<br>Pradesh | 105               | 60                | 2015                       | 5                                 |
| Badlapur   | Maharashtra         | 105               | 60                | 2015                       | 12                                |
| Kolkata    | West Bengal         | 105               | 60                | 2015                       | 25                                |
| Sagar      | Madhya<br>Pradesh   | 103               | 60                | 2015                       | 10                                |
| Domdivali  | Maharashtra         | 103               | 60                | 2015                       | 11                                |
| Chandrapur | Maharashtra         | 103               | 60                | 2015                       | 12                                |
| Angul      | Odisha              | 102               | 60                | 2015                       | 15                                |
| Baddi      | Himachal<br>Pradesh | 101               | 60                | 2015                       | 5                                 |
| Ambernath  | Maharashtra         | 101               | 60                | 2015                       | 11                                |
| Rourkela   | Odisha              | 100               | 60                | 2015                       | 15                                |
| Guntur     | Andhra<br>Pradesh   | 100               | 60                | 2015                       | 26                                |
| Sangrur    | Punjab              | 98                | 60                | 2015                       | 16                                |
| Guwahati   | Assam               | 97                | 60                | 2015                       | 2                                 |
| Indore     | Madhya<br>Pradesh   | 97                | 60                | 2015                       | 10                                |
| Kolhapur   | Maharashtra         | 97                | 60                | 2015                       | 11                                |
| Dera Bassi | Punjab              | 96                | 60                | 2015                       | 17                                |
| Gulbarga   | Karnataka           | 95                | 60                | 2015                       | 8                                 |
| Ujjain     | Madhya<br>Pradesh   | 93                | 60                | 2015                       | 10                                |
| Kohima     | Nagaland            | 93                | 60                | 2015                       | 14                                |
| Hyderabad  | Telangana           | 93                | 60                | 2015                       | 21                                |
| Singrauli  | Madhya<br>Pradesh   | 93                | 60                | 2015                       | 26                                |
| Panchkula  | Haryana             | 92                | 60                | 2015                       | 26                                |
| Rohtak     | Haryana             | 92                | 60                | 2015                       | 26                                |
| Tuticorin  | Tamil Nadu          | 91                | 60                | 2015                       | 19                                |
| Bhavnagar  | Gujarat             | 91                | 60                | April 2014 -<br>March 2015 | 26                                |

APPENDIX-I PM<sub>10</sub> LEVELS ACROSS INDIA (ANNUAL AVERAGE 2015<sup>27</sup>)

| CITY         | STATE               | ANNUAL<br>AVERAGE | NAAQS<br>(ANNUAL) | TIME<br>FRAME              | REFERENCE<br>SOURCE <sup>28</sup> |
|--------------|---------------------|-------------------|-------------------|----------------------------|-----------------------------------|
| Dewas        | Madhya<br>Pradesh   | 90                | 60                | 2015                       | 10                                |
| Nagpur       | Maharashtra         | 90                | 60                | 2015                       | 12                                |
| Faridkot     | Punjab              | 90                | 60                | 2015                       | 16                                |
| Surat        | Gujarat             | 89                | 60                | 2015                       | 4                                 |
| Nalagarh     | Himachal<br>Pradesh | 89                | 60                | 2015                       | 5                                 |
| Jamnagar     | Gujarat             | 88                | 60                | April 2014 -<br>March 2015 | 26                                |
| Satna        | Madhya<br>Pradesh   | 88                | 60                | 2015                       | 26                                |
| Raichur      | Karnataka           | 87                | 60                | April 2015 -<br>March 2016 | 9                                 |
| Vadodhra     | Gujarat             | 86                | 60                | April 2014 -<br>March 2015 | 26                                |
| Rajkot       | Gujarat             | 86                | 60                | April 2014 -<br>March 2015 | 26                                |
| Patencheru   | Telangana           | 85                | 60                | 2015                       | 21                                |
| Chandigarh   | Chandigarh          | 85                | 60                | 2015                       | 26                                |
| Keonjhar     | Odisha              | 85                | 60                | 2015                       | 26                                |
| Anantpuram   | Andhra<br>Pradesh   | 84                | 60                | 2015                       | 26                                |
| Sunder Nagar | Himachal<br>Pradesh | 83                | 60                | 2015                       | 5                                 |
| Aurangabad   | Maharashtra         | 83                | 60                | 2015                       | 11                                |
| Naya Nangal  | Punjab              | 83                | 60                | 2015                       | 17                                |
| Kurnool      | Andhra<br>Pradesh   | 82                | 60                | 2015                       | 1                                 |
| Sangli       | Maharashtra         | 82                | 60                | 2015                       | 11                                |
| Balasore     | Odisha              | 82                | 60                | 2015                       | 15                                |
| Gandhi Nagar | Gujarat             | 82                | 60                | April 2014 -<br>March 2015 | 26                                |
| Bhubneshwar  | Odisha              | 81                | 60                | 2015                       | 15                                |
| Cuttak       | Odisha              | 81                | 60                | 2015                       | 15                                |
| Chennai      | Tamil Nadu          | 81                | 60                | 2015                       | 20                                |
| Hubli        | Karnataka           | 80                | 60                | April 2015 -<br>March 2016 | 9                                 |

| CITY               | STATE               | ANNUAL<br>AVERAGE | NAAQS<br>(ANNUAL) | TIME<br>FRAME              | REFERENCE<br>SOURCE <sup>28</sup> |
|--------------------|---------------------|-------------------|-------------------|----------------------------|-----------------------------------|
| Latur              | Maharashtra         | 78                | 60                | 2015                       | 12                                |
| Nashik             | Maharashtra         | 78                | 60                | 2015                       | 12                                |
| Pune               | Maharashtra         | 77                | 60                | 2015                       | 12                                |
| Dera Baba<br>Nanak | Punjab              | 77                | 60                | 2015                       | 17                                |
| Nalgonda           | Telangana           | 76                | 60                | 2015                       | 21                                |
| Sindri             | Jharkhand           | 75                | 60                | 2015                       | 26                                |
| Solapur            | Maharashtra         | 74                | 60                | 2015                       | 12                                |
| SBS Nagar          | Punjab              | 74                | 60                | 2015                       | 16                                |
| Bhiwandi           | Maharashtra         | 73                | 60                | 2015                       | 11                                |
| Silchar            | Assam               | 72                | 60                | 2015                       | 2                                 |
| Kalyan             | Maharashtra         | 71                | 60                | 2015                       | 11                                |
| Sibsagar           | Assam               | 70                | 60                | 2015                       | 2                                 |
| Rasulpur           | Punjab              | 70                | 60                | 2015                       | 16                                |
| Dharwad            | Karnataka           | 69                | 60                | April 2015 -<br>March 2016 | 9                                 |
| Nellore            | Andhra<br>Pradesh   | 66                | 60                | 2015                       | 1                                 |
| Korba              | Chhattisgarh        | 66                | 60                | April 2015 -<br>March 2016 | 26                                |
| Karim Nagar        | Telangana           | 65                | 60                | 2015                       | 21                                |
| Belguam            | Karnataka           | 64                | 60                | April 2015 -<br>March 2016 | 9                                 |
| Kolar              | Karnataka           | 63                | 60                | April 2015 -<br>March 2016 | 9                                 |
| Visakhapatnam      | Andhra<br>Pradesh   | 61                | 60                | 2015                       | 1                                 |
| Parwanoo           | Himachal<br>Pradesh | 61                | 60                | 2015                       | 5                                 |
| Khammam            | Telangana           | 60                | 60                | 2015                       | 21                                |
| Bellary            | Karnataka           | 57                | 60                | April 2015 -<br>March 2016 | 9                                 |
| Bidar              | Karnataka           | 57                | 60                | April 2015 -<br>March 2016 | 9                                 |
| Chamrajnagar       | Karnataka           | 57                | 60                | April 2015 -<br>March 2016 | 9                                 |

APPENDIX-I PM<sub>10</sub> LEVELS ACROSS INDIA (ANNUAL AVERAGE 2015<sup>27</sup>)

| СІТҮ        | STATE      | ANNUAL<br>AVERAGE | NAAQS<br>(ANNUAL) | TIME<br>FRAME              | REFERENCE<br>SOURCE <sup>28</sup> |
|-------------|------------|-------------------|-------------------|----------------------------|-----------------------------------|
| Warangal    | Telangana  | 56                | 60                | 2015                       | 21                                |
| Cuddalore   | Tamil Nadu | 56                | 60                | 2015                       | 26                                |
| Berhampur   | Odisha     | 55                | 60                | 2015                       | 26                                |
| Chitradurga | Karnataka  | 46                | 60                | April 2015 -<br>March 2016 | 9                                 |
| Mysore      | Karnataka  | 46                | 60                | April 2015 -<br>March 2016 | 9                                 |
| Ranebennur  | Karnataka  | 46                | 60                | April 2015 -<br>March 2016 | 9                                 |
| Karwar      | Karnataka  | 40                | 60                | April 2015 -<br>March 2016 | 9                                 |
| Mandya      | Karnataka  | 40                | 60                | April 2015 -<br>March 2016 | 9                                 |
| Bhadravathi | Karnataka  | 38                | 60                | April 2015 -<br>March 2016 | 9                                 |
| Mangalore   | Karnataka  | 35                | 60                | April 2015 -<br>March 2016 | 9                                 |
| Hassan      | Karnataka  | 25                | 60                | April 2015 -<br>March 2016 | 9                                 |

### APPENDIX-II REFERENCE SOURCE

| REFERENCE<br>SOURCE | REFERENCE                                                                               |
|---------------------|-----------------------------------------------------------------------------------------|
| 1                   | http://cpcb.nic.in/Andhra_Pradesh_nonattainment.pdf                                     |
| 2                   | http://cpcb.nic.in/Assam_nonattainment.pdf                                              |
| 3                   | http://cpcb.nic.in/Chhattisgarh_nonattainment.pdf                                       |
| 4                   | http://cpcb.nic.in/Gujarat_nonattainment.pdf                                            |
| 5                   | http://cpcb.nic.in/HimachalPradesh_nonattainment.pdf                                    |
| 6                   | http://cpcb.nic.in/Jammu&Kashmir_nonattainment.pdf                                      |
| 7                   | http://cpcb.nic.in/Jharkhand_nonattainment.pdf                                          |
| 8                   | http://cpcb.nic.in/Karnataka_nonattainment.pdf                                          |
| 9                   | http://kspcb.kar.nic.in/AAQ-Karnataka-2015-16.pdf                                       |
| 10                  | http://cpcb.nic.in/MadhyaPradesh_nonattainment.pdf                                      |
| 11                  | http://mpcb.gov.in/envtdata/demoPage1.php                                               |
| 12                  | http://cpcb.nic.in/Maharashtra_nonattainment.pdf                                        |
| 13                  | http://cpcb.nic.in/Meghalaya_nonattainment.pdf                                          |
| 14                  | http://cpcb.nic.in/Nagaland_nonattainment.pdf                                           |
| 15                  | http://cpcb.nic.in/Odisha_nonattainment.pdf                                             |
| 16                  | http://www.ppcb.gov.in/Attachments/Environmental%20Data/4%20year%20Air%20oct%202016.pdf |
| 17                  | http://cpcb.nic.in/Punjab_nonattainment.pdf                                             |
| 18                  | http://cpcb.nic.in/Rajasthan_nonattainment.pdf                                          |
| 19                  | http://cpcb.nic.in/TamilNadu_nonattainment.pdf                                          |
| 20                  | http://www.tnpcb.gov.in/pdf_2016/ambient_airquality_rpt-2015.pdf                        |
| 21                  | http://tspcb.cgg.gov.in/Pages/Envdata.aspx                                              |
| 22                  | http://cpcb.nic.in/UttarPradesh_nonattainment.pdf                                       |
| 23                  | http://ueppcb.uk.gov.in/files/Ambient_Air_Quality_2015(2).pdf                           |
| 24                  | http://cpcb.nic.in/Uttarakhand_nonattainment.pdf                                        |
| 25                  | http://cpcb.nic.in/WestBengal_nonattainment.pdf                                         |
| 26                  | RTI Data                                                                                |



A ghostly ceremonial boulevard in New Delhi Image: Subrata Biswas/ Greenpeace



Greenpeace is a global organisation that uses non-violent direct action to tackle the most crucial threats to our planet's biodiversity and environment. Greenpeace is a non-profit organisation, present in 40 countries across Europe, The Americas, Asia and the Pacific.

It speaks for 2.8 million supporters worldwide, and inspires many millions more to take action every day. To maintain its independence, Greenpeace does not accept donations from governments or corporations but relies on contributions from individual supporters and foundation grants.

Greenpeace has been campaigning against environmental degradation since 1971 when a small boat of volunteers and journalists sailed into Amchitka, an area north of Alaska, where the US Government was conducting underground nuclear tests.This tradition of 'bearing witness' in a non-violent manner continues today, and ships are an important part of all its campaign work.

Greenpeace Environment Trust Old No 21, New No 6 1st Floor, Rajaram Mehta Avenue Nelson Manickam Road Chennai 600029

Phone: 044-42046502

Head Office No.338, 8th Cross Wilson Garden Bangalore - 560 027

Supporter Services: 1800 425 0374 / 080 22131899

Regional Office 161-J, Internal Road Gautam Nagar, opp 161/B/1 New Delhi 110 049

Phone: +91 11 47665000 Fax: +91 11 47665010

Supporter Services: 1800 425 0374/ 080 22131899 Toll Free No.: 1800 425 0374 Email: supporter.services.in@greenpeace.org www.greenpeace.org/india

Reach us across our five offices in Mumbai, Pune, Hyderabad, Patna and Delhi