Lesson : 08 USE of input, fprintf and sscanf IN MATLAB
Date :

Aim

To learn the use of input-output commands such as input, fprintf and sscanf in MATLAB

General

1. ' $\% d$ ' Prints a decimal integer in its position
2. ' $\%$ ' ' converts a decimal array into octal array before printing on screen
3. ' $\% x$ ' converts a decimal array into hex array before printing on the screen
4. ' $\% \mathrm{f}$ ' converts the integers into floating point and prints
5. ${ }^{\circ} \circ \mathrm{g}$ ' gives the output in integer or floating point of scientific notation
6. ' $\% \mathrm{C}$ ' can be used to print a character or a character array

Exercises

1. use of fprintf in a simple interest program
2. use of input and fprintf in a simple interest program
3. use of sscanf function

Result

Thus we learned the use of some of the I/O (input-output) commands with the help of exercises in MATLAB environment.

Date :

Aim

To learn the use of conditional control statements in writing a MATLAB program.

Exercises

1. use of if statement
2. use of if-elseif-end statement
3. use of if-elseif-elseif. else-end statement
4. use of for loop
5. use of while loop
6. use of nested if else

Result

Thus we learned the use of some of the important conditional control statements in MATLAB with the help of few examples. The screen-shots of the exercises performed are also presented.

PART II

Lesson : 10 FINDING ROOTS OF A POLYNOMIAL Date :

Aim

To find the roots of a polynomial of order 5, 4 and 2 using MATLAB.

Exercises

1. Find the roots of the polynomial of order 5
2. Find the roots of the polynomial of order 4
3. Find the roots of the polynomial of order 2 (or quadratic equation)

Result

Thus the roots of given polynomial of order 5, 4 and 2 were computed using MATLAB as shown in the screen-shot.

Lesson : 11 MATRICES - MATRIX OPERATIONS
Date :

Abstract

Aim To learn the some of the Matrix Operations such as Addition of a Matrix, Transpose of a matrix, Determinants, Cramer's rule, Eigen value and Eigen vectors.

Exercises

1. Compute addition and subtraction of matrix
2. Obtaining transpose of a matrix
3. Compute determinants
4. Use of Cramer's rule
5. Finding solution to simultaneous equations through matrix
6. Finding Eigen values and Eigen vectors

Result

Thus we learned some of the matrix operations using MATLAB with few examples as shown in the screen-shot.

Lesson : 12 ORDINARY DIFFERENTIAL EQUATIONS
Date :

Aim
To learn ordinary differential equation (ODE) Using MATLAB.

Exercises

1. Solving a first order ordinary differential equation with initial conditions.

Result

Thus we learned the use of MATLAB in finding the solution to first order differential equation with initial boundary conditions.

Lesson : 13 SOLUTION TO TRANSCENDENTAL EQUATIONS
Date :

Aim

To solve the transcendental equation using MATLAB

Exercises

1. Solving a non linear algebraic equation (Transcendental equations)

Date :

Aim

To learn the curve fitting techniques using MATLAB

Exercises

1. Polynomial curve fitting - Linear, Quadratic and Cubic

Result

Thus we performed the curve fitting techniques for the given data using MATLAB.

Lesson : 15 NUMERICAL INTEGRATION
Date :

Aim

To find a solution for the given integral equation by Trapezoidal and Simpson's rule using MATLAB.

Result

Thus the given transcendental equation can be solved using MATLAB as shown in the screen shots.

