15CH305J Computational Techniques in Chemical Engineering

Department of Chemical Engineering
SRM Institute of Science and Technology
Kattankulathur - 603203

Unit 1 - Numerical (or iterative) solution to transcendental (or nonlinear) algebraic equations

- Review of iterative methods:

Bisection, Regula-Falsi and NewtonRaphson methods

- Phase equilibrium problems and

Equation of State

- Determination of Bubble and Dew
points

Given below is the van der Waal's equation of state:

$$
\left(p+\frac{a}{v^{2}}\right)(v-b)=R T
$$

Where $v=V / n$ is molal volume ($\mathrm{m}^{3} / \mathrm{kmol}$); a and b are empirical constants, $R=$ Universal gas constant and T is the temperature of the gas

Solving the above equation to determine p for a given v is easy while solving for v for specified values of p and T is relatively difficult.

What makes an equation easy or difficult to solve is its linearity or non linearity in the unknown variable?

Equations that contain unknown variables raised to the first power only (x but not x^{2} or $x^{1 / 2}$), and that do not contains transcendental functions $\left(\sin x, e^{x}\right.$) or products (x, y) of unknown variables, are called Linear Equations.

Equations that do not satisfy these conditions are called nonlinear equations

For example, if a, b, and b are constants, and x, y, and z are variables,

$$
\begin{array}{rlrl}
a x+b y & =c & & \text { is linear } \\
a x^{2}=b y+c & & \text { is nonlinear (contains } x^{2} \text {) } \\
x-\ln (x)+b=0 & & \text { is nonlinear contains } \ln (x)
\end{array}
$$

A single equation containing several variables may be linear with respect to some variables and nonlinear with respect to others. For example

$$
x y-e^{x}=3
$$

is linear in y and nonlinear in x. If x isknown, the equation may easily be solved for y, while the solution for x from a known variable of y is much harder to obtain.

$$
P \hat{V}=R T\left(1+\frac{B(T)}{\hat{V}}+\frac{C(T)}{\hat{V}^{2}}\right)
$$

Another example is the three-term virial equation of state:

$$
P \hat{V}=R T\left(1+\frac{B(T)}{\hat{V}}+\frac{C(T)}{\hat{V}^{2}}\right)
$$

where B and C are known functions of temperature

This equation is linear in P and nonlinear in \hat{v} and T. It is easy to solve for P from given values of T and \hat{v} and difficult to solve for either \hat{v} or T from given values of the other two variables.

Linear equations that contain a single unknown variable have one and only one solution (one root).

For example

$$
\left.\begin{array}{rl}
7 x-3=2 x+4 & \Longrightarrow x=1.2 \\
P \hat{V}=R T \\
P=3, R=2, T=300
\end{array}\right\} \Longrightarrow \hat{V}=R T / P=(2)(300) /(3)=200
$$

In contrast, nonlinear equations that contain a single unknown variable may have any number of real roots (as well as imaginary and complex roots). For example,

$$
\begin{array}{rll}
x^{2}+1 & =0 & \text { has no real roots } \\
x^{2}-1 & =0 & \text { has two real roots }(x=+1 \text { and } x=-1) \\
x-e^{-x} & =0 & \text { has one real root }(x=0.56714 \ldots) \\
\sin x & =0 & \text { has an infinite number of real roots }(x=0, \pi, 2 \pi, \ldots)
\end{array}
$$

The roots of some nonlinear equations, such as the second of the equations given above, can be obtained directly using simple algebra, but most nonlinear equations must be solved using an iterative or trial-and-error technique.

Solution to nonlinear equation in single variable

- Graphical method
- Simple iterative procedure or successive approximation
- Bisection
- Regula falsi
- Newton Raphson method
- Graphical method is a simple method for obtaining root of the function $f(x)=0$
- The procedure is, make a plot and observe where it crosses x-axis
- This point, represents the value x for which $f(x)=0$ provides a rough approximation of the root
- An iterative method is also called as "trial and error" method or successive approximation/fixed point iteration
- It is used to obtain an estimate of the function $f(x)$

Solution to nonlinear equation in single variable - Example problem on Graphical method

- Problem : 1 Evaluate the square root of a positive number A i.e. (\sqrt{A}), where $A>0$ by graphical method. Consider $A=2$.
- From problem statement we have $\quad x=\sqrt{A}$

$$
\begin{equation*}
(1) \Rightarrow x=\sqrt{2} \tag{1}
\end{equation*}
$$

- The above equation (2) can be rewritten as

$$
(2) \Rightarrow x^{2}=2
$$

Equation (2) can be rearranged as

$$
(3) \Rightarrow f(x)=x^{2}-2
$$

Graphical method - plot a graph between x and $y=f(x)$ and observe where the function line crosses the x-axis. That point will give as the approximate root for

Ultimately we are interested to find the value (or root) of x that satisfies $f(x)=0$

Solution to nonlinear equation in single variable - Graphical method

Solution to nonlinear equation in single variable - Simple Iterative method
The simple iterative method used is successive approximation

- Any function in the form of

$$
\begin{equation*}
f(x)=0 \tag{1}
\end{equation*}
$$

- can be transformed algebraically into the form

$$
\begin{equation*}
x=g(x) \tag{2}
\end{equation*}
$$

- Equations (1) and (2) are equivalent and therefore a root of the equation (2) is also root of equation (1).
- The transformation of equation (1) to (2) can be accomplished by either algebraic manipulation or by adding x to both the sides of the original equation.

Solution to nonlinear equation in single variable - Simple Iterative method

- For example , $x^{2}-2 x+3=0 \Rightarrow f(x)=0$
- Can be simply rearranged or manipulated to yield

$$
\begin{aligned}
& \Rightarrow x^{2}+3=2 x \\
& \Rightarrow x=\frac{x^{2}+3}{2}
\end{aligned}
$$

- Whereas $\sin x=0$ could be put into the form $x=g(x)$ by adding x on both the sides to yield $x=\sin x+x$
- Thus given the initial guess at the root x_{i} equation $x=g(x)$ can be used to compute a new estimate x_{i+1} as expressed by iterative formula $x_{i+1}=g\left(x_{i}\right)$
- Therefore the approximate relative error for the iterative equation $x_{i+1}=g\left(x_{i}\right)$ is by

$$
R_{e}=\left|\frac{x_{i+1}-x_{i}}{x_{i+1}}\right| \times 100
$$

Solution to nonlinear equation in single variable - Simple Iterative method
The simple iterative method used is successive approximation

- Problem : 2 Evaluate the square root of a positive number A i.e. (\sqrt{A}), where $A>$ 0 by successive approximation method. Consider $A=2$.
- Solution:
- From problem statement we have $\quad x=\sqrt{A}$

$$
\begin{equation*}
(1) \Rightarrow x=\sqrt{2} \tag{1}
\end{equation*}
$$

- The above equation (2) can be rewritten as

$$
\begin{equation*}
\text { (2) } \Rightarrow x^{2}=2 \tag{2}
\end{equation*}
$$

Equation (2) can be rearranged as

$$
\begin{align*}
(3) \Rightarrow & f(x)=x^{2}-2 \Rightarrow f(x)=0 \tag{3}\\
& x=g(x) \\
& x_{i+1}=g\left(x_{i}\right)
\end{align*}
$$

Solution to nonlinear equation in single variable - Simple Iterative method

$$
\begin{gather*}
(3) \Rightarrow f(x)=x^{2}-2 \Rightarrow f(x)=0 \\
x=g(x) \\
x^{2}-2=0 \tag{4}\\
x^{2}=2
\end{gather*}
$$

Rewrite the equation (4) as
Add x^{2} on both the sides of above equation (5), then we have
Equation (6) can be simplified as

$$
\begin{equation*}
2 x^{2}=2+x^{2} \tag{7}
\end{equation*}
$$

Divide the equation (7) by $2 x$ on both the sides, and rearrange to give

$$
\begin{equation*}
x=\frac{2+x^{2}}{2 x} \tag{8}
\end{equation*}
$$

The equation (8) is transformed as $x_{i+1}=\frac{2+x_{i}{ }^{2}}{2 x_{i}}$ which is of the form $x_{i+1}=g\left(x_{i}\right)$

Solution to nonlinear equation in single variable - Simple Iterative method

\boldsymbol{i}	$\boldsymbol{x}_{\mathbf{i}}$	$\boldsymbol{g}\left(\boldsymbol{x}_{\boldsymbol{i}}\right)$	$\boldsymbol{x}_{\mathbf{i + 1}}$	$\boldsymbol{R}_{\boldsymbol{e}}, \boldsymbol{\%}$		
0	0.5000	2.2500	2.2500	77.7778		
1	2.2500	1.5694	1.5694	43.3628		
2	1.5694	1.4219	1.4219	10.3773		
3	1.4219	1.4142	1.4142	0.5414		
4	1.4142	1.4142	1.4142	0.0015		
5	1.4142	1.4142	1.4142	0.0000		
6	1.4142	1.4142	1.4142	0.0000	\quad	
:---:	\quad					
:---	\quad					
:---						

Solution to nonlinear equation in single variable - Simple Iterative method
The simple iterative method used is successive approximation
Problem : 3 Evaluate the function $f(x)=x-\frac{1}{\sin (x)}$ by successive approximation method.

Solution:

- From problem statement we have $\quad x=\frac{1}{\sin (x)} \quad$ (1) Equation (1) can be rearranged as

$$
\begin{aligned}
x & =g(x) \\
x_{i+1} & =g\left(x_{i}\right)
\end{aligned}
$$

The initial guess may be obtained by plotting a graph between x_{i} and $y=f\left(x_{i}\right)$ and the line passing through x-axis may give an approximate root

Solution to nonlinear equation in single variable - Iterative method

$\boldsymbol{x}_{\boldsymbol{i}}$	$\boldsymbol{f}\left(\boldsymbol{x}_{\boldsymbol{i}}\right)$
0.5	-1.5858
0.6	-1.1710
0.7	-0.8523
0.8	-0.5940
0.9	-0.3766
1	-0.1884
1.1	-0.0221
1.2	0.1271
1.3	0.2622
1.4	0.3852
1.5	0.4975
1.6	0.5996
1.7	0.6916

$$
f\left(x_{i}\right)=x_{i}-\frac{1}{\sin \left(x_{i}\right)}
$$

The root may lies between 0.5 and 1.5

Solution to nonlinear equation in single variable - Simple Iterative method

\boldsymbol{i}	$\boldsymbol{x}_{\boldsymbol{i}}$	$\boldsymbol{g}\left(\boldsymbol{x}_{\boldsymbol{i}}\right)$	$\boldsymbol{x}_{\boldsymbol{i}+\boldsymbol{1}}$	$\boldsymbol{R}_{\boldsymbol{e}} \boldsymbol{\%}$
0	0.5	2.086	2.086	76.0
1	2.086	1.149	1.149	81.5
2	1.149	1.096	1.096	4.8
3	1.096	1.124	1.124	2.5
4	1.124	1.109	1.109	1.4
5	1.109	1.117	1.117	0.8
6	1.117	1.113	1.113	0.4
7	1.113	1.115	1.115	0.2
8	1.115	1.114	1.114	0.1
9	1.114	1.114	1.114	0.1
10	1.114	1.114	1.114	0.0
11	1.114	1.114	1.114	0.0
12	1.114	1.114	1.114	0.0

Solution to nonlinear equation in single variable - Simple Iterative method

\boldsymbol{i}	$\boldsymbol{x}_{\boldsymbol{i}}$	$\boldsymbol{g}\left(\boldsymbol{x}_{\boldsymbol{i}}\right)$
0	0.500	2.086
1	2.086	1.149
2	1.149	1.096
3	1.096	1.124
4	1.124	1.109
5	1.109	1.117
6	1.117	1.113
7	1.113	1.115
8	1.115	1.114
9	1.114	1.114
10	1.114	1.114

Solution to nonlinear equation in single variable - Simple Iterative method Chemical Engineering application - Equation of State

Problem: 4 The composition of gas mixture by mole percent at 1 atm (gauge) pressure and $30^{\circ} \mathrm{C}$ is as follows:

$$
\begin{array}{ll}
\mathrm{N}_{2} & =71 \% \\
\mathrm{O}_{2} & =19 \% \\
\mathrm{NH}_{3} & =10 \%
\end{array}
$$

Find the weight of $100 \mathrm{~m}^{3}$ of gas mixture using van der Waals equation of state (VDE).
Consider $a=135.653 \times 10^{-3} \mathrm{~Pa} /\left(\mathrm{m}^{3} / \mathrm{mol}\right)^{2}$ and $b=0.037 \times 10-3 \mathrm{~m}^{3} / \mathrm{mol}$. Take, Universal Gas Constant as $R=8.31415 \frac{\mathrm{Pam}^{3}}{\mathrm{~mol} \mathrm{~K}}$ and pressure, Pi.e. $1 \mathrm{~atm}=1.01325 \times 10^{5} \mathrm{~Pa}$

Solution to nonlinear equation in single variable - Simple Iterative method Chemical Engineering application - Equation of State

Solution

$$
\begin{align*}
\left(p+\frac{a}{v^{2}}\right)(v-b) & =R T \tag{1}\\
(2) \Rightarrow v & =\frac{R T}{p+\frac{a}{v^{2}}}+b \tag{2}\\
v_{i+1} & =\frac{R T}{p+\frac{a}{v_{i}^{2}}}+b \tag{3}
\end{align*}
$$

Solution to nonlinear equation in single variable - Simple Iterative method Chemical Engineering application - Equation of State

$$
\begin{align*}
\rho_{\text {mix }} & =\frac{1}{v} \times \sum y_{i} M_{i} \tag{1}\\
(2) \Rightarrow v & =\frac{R T}{p+\frac{a}{v^{2}}}+b \tag{2}\\
v_{i+1} & =\frac{R T}{p+\frac{a}{v_{i}^{2}}}+b \tag{3}
\end{align*}
$$

The initial guess for equation (3) may be obtained from ideal gas equation using the relationship $P V=n R T \Longrightarrow \frac{V}{n}=v=\frac{R T}{P}$

Solution to nonlinear equation in single variable - Simple Iterative method Chemical Engineering application - Equation of State

The ideal gas equation can be rearranged as given below:

$$
\begin{gathered}
P V=n R T \Rightarrow \frac{V}{n}=v_{i}=\frac{R T}{P} \\
i=0 \text { in } v_{i} \quad v_{o}=\frac{R T}{P}=\frac{8.31415 \times 303}{1 \times 1.01325 \times 10^{5}} \\
v_{o}=0.02486 \frac{\mathrm{~m}^{3}}{\mathrm{~mol}}
\end{gathered}
$$

Solution to nonlinear equation in single variable - Simple Iterative method

Now we know that $\quad v_{i+1}=\frac{R T}{p+\frac{a}{v_{i}{ }^{2}}}+b$
$i=0$ in above equation then for $1^{\text {st }}$ iteration we have

$$
v_{1}=\frac{R T}{p+\frac{a}{v_{0}^{2}}}+b
$$

From ideal gas equation we have $v_{o}=0.02486 \frac{\mathrm{~m}^{3}}{\mathrm{~mol}}$ substitute this in above equation as an initial guess and iterate successively to get v_{0} through Vander waal's equation. The solution is obtained and provided in next slide

Solution to nonlinear equation in single variable - Simple Iterative method

Solution table

\boldsymbol{i}	$\boldsymbol{v}_{\boldsymbol{i}}$	$\boldsymbol{g}\left(\boldsymbol{v}_{\boldsymbol{i}}\right)$	$\boldsymbol{v}_{\boldsymbol{i + 1}}$	$R_{e}, \%$
0	0.02486	0.02485	0.02485	0.06734
1	0.02485	0.02485	0.02485	0.00029
2	0.02485	0.02485	0.02485	0.00000
3	0.02485	0.02485	0.02485	0.00000

Solution to nonlinear equation in single variable - Simple Iterative method
We know that $\rho_{\text {mix }}=\frac{1}{V}=v \times \sum y_{i} M_{i}$
Solution table for $\sum y_{i} M_{i}$ is given below

S. NO.	Components (i)	$\boldsymbol{y}_{\mathbf{i}}$	$\boldsymbol{M}_{\mathbf{i}}$	$\sum y_{i} M_{i}$
1	$\mathrm{~N}_{2}$	0.71	28	19.880
2	O_{2}	0.19	32	6.080
3	NH_{3}	0.1	17	1.700
Total				

Where y_{i} is mole fraction of component i and M_{i} is the molecular weight of component i and it has the unit of $\frac{\mathrm{kg}}{\mathrm{mol}}$ in SI

Molal volume v from Vander waal's equation through iterative procedure is obtained and it can be substituted in equation (1) to get $\rho_{\text {mix }}$

Solution to nonlinear equation in single variable - Simple Iterative method
We know that $\rho_{\text {mix }}=\frac{1}{v} \times \sum y_{i} M_{i}$ where $n=1$ mole

$$
\rho_{m i x}=\frac{1}{v} \times \sum y_{i} M_{i}=0.02486 \frac{\mathrm{~mol}}{\mathrm{~m}^{3}} \times 27.66 \frac{\mathrm{~kg}}{\mathrm{~mol}}=0.6877 \mathrm{~kg} / \mathrm{m}^{3}
$$

$1 \mathrm{~m}^{3}$ of gas weighs 0.6877 kg
$100 \mathrm{~m}^{3}$ of gas $=100 \times \frac{0.6877}{1}=68.77 \mathrm{~kg}$

References

1. Raymond P. Canale and Steven C. Chapra, Numerical Methods for Engineers, McGraw-Hill Higher Education
2. Richard Felder, Elementary principles of chemical processes, John Wiley \& Sons
