Introduction – Time Value of Money

Equivalence

Equations for economic studies

Amortization

Depreciation and Depletion
Introduction – Time Value of Money

1. Equivalence

2. Equations for economic studies

3. Amortization

4. Depreciation and Depletion
Process Engineering Economics

Introduction – Time Value of Money

Equivalence

Equations for economic studies

Amortization

Depreciation and Depletion
<table>
<thead>
<tr>
<th>S.No</th>
<th>Equation</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>(F = P(1 + i)^n = PC_F)</td>
<td>Single payment at the end of (n^{th}) period</td>
</tr>
<tr>
<td>2.</td>
<td>(R = P \left(\frac{i(1+i)^n}{(1+i)^n - 1} \right) = \frac{P}{P_F})</td>
<td>Uniform payment at the end of period (to pay fixed amount each year)</td>
</tr>
<tr>
<td>3.</td>
<td>(F = R \left(\frac{(1+i)^n - 1}{i} \right))</td>
<td>Future worth at the end of (n^{th}) period</td>
</tr>
<tr>
<td>4.</td>
<td>(P = R \left(\frac{(1+i)^n - 1}{i(1+i)^n} \right) = RP_F)</td>
<td>Present Worth</td>
</tr>
<tr>
<td>S.No</td>
<td>Equation</td>
<td>Use</td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td>-----</td>
</tr>
<tr>
<td>4.</td>
<td>$P = R \left(\frac{(1+i)^n - 1}{i(1+i)^n} \right) = RP_F$</td>
<td>Present Worth</td>
</tr>
<tr>
<td>5.</td>
<td>$R = (P - L) \left(\frac{i(1+i)^n}{(1+i)^n - 1} \right) + L \times i$</td>
<td>Uniform payment with salvage (L)</td>
</tr>
<tr>
<td>6.</td>
<td>$(1+i)^n = \frac{1}{1 - \left(\frac{P}{R} \right)i}$</td>
<td>Rate of return or payment time when L is zero or salvage is neglected</td>
</tr>
<tr>
<td>7.</td>
<td>$n = \frac{-\log \left(1 - i \frac{P}{R} \right)}{\log(1+i)}$</td>
<td>Payment time when L is zero or salvage is neglected</td>
</tr>
<tr>
<td>S. No</td>
<td>Equation</td>
<td>Use</td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>-----</td>
</tr>
<tr>
<td>8.</td>
<td>[P' = \frac{R'}{i'}]</td>
<td>Capitalized costs (or) perpetual uniform payment (R') to an equivalent capital cost (P') at the present time for a given interest rate.</td>
</tr>
<tr>
<td>9.</td>
<td>[C_k = (C_{FC} - S_{FD}) f_k]</td>
<td>Capitalized cost including cost factor.</td>
</tr>
<tr>
<td></td>
<td>[f_k = \frac{(1 + i)^n}{(1 + i)^n - 1}]</td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>[R'' = P \left(\frac{i'}{(1 + i')^n - 1} \right)]</td>
<td>Sinking fund deposit, (i') – is sinking fund interest rate and (L) is zero.</td>
</tr>
<tr>
<td>11.</td>
<td>[P = R'' \left(\frac{(1 + i')^n - 1}{i[(1 + i')^n - 1] + i'} \right)]</td>
<td>Hoskold’s formula - is rate of return, (i') is sinking fund interest rate. Note that when (i = i') equation (10) reduces to equation (4)</td>
</tr>
</tbody>
</table>
Process Engineering Economics – Equations for economic studies

\(i \) = interest rate per period
\(i' \) = sinking fund interest
\(P \) = present sum of money
\(F \) = sum at future date at ‘\(n \)’ Periods
\(R \) = end of period payment to give \(P \) in uniform series
\(L \) = salvage at some future date
\(C_F \) = compound interest factor equal to \((1 + i)^n\)
\(P_F \) = present worth factor equal to \(\frac{(1 + i)^n - 1}{i(1 + i)^n} = \frac{P}{R} \)

\(R'' \) = periodic sinking fund deposit \(R'' \)
\(R''' \) = the annual payment \(R''' \) to the owners each year which pays them when the studies of capital recovery for exploitation of mineral resources.
\(C_{FC} \) = fixed capital cost of equipment for a finite life of ‘\(n \)’ years
\(C_k \) = capitalized cost of the equipment
\(S_{FD} \) = \(\frac{S}{(1 + i)^n} \); salvage value or scrap value with compound interest
\(f_k \) = capitalized cost factor
In the above table i.e. equations used for economic studies, the compound interest factors used in all the equations from 1 to 11 are based on two series

- Single Payment series
- Uniform annual series

<table>
<thead>
<tr>
<th>Single Payment</th>
<th>Uniform annual series</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compound-amount factor</td>
<td>Present-worth factor</td>
</tr>
<tr>
<td>Present-worth factor</td>
<td>Sinking-fund factor</td>
</tr>
<tr>
<td>Capital recovery factor</td>
<td>Compound-amount factor</td>
</tr>
<tr>
<td>Present-worth factor</td>
<td>Uniform annual series</td>
</tr>
<tr>
<td>Given P to Find F</td>
<td>Given F to Find P</td>
</tr>
<tr>
<td>$(1 + i)^n$</td>
<td>$\frac{1}{(1 + i)^n}$</td>
</tr>
<tr>
<td>$\frac{i}{(1 + i')^n - 1}$</td>
<td>$\frac{i(1 + i)^n}{(1 + i)^n - 1}$</td>
</tr>
<tr>
<td>$\frac{(1 + i)^n - 1}{i}$</td>
<td>$\frac{(1 + i)^n - 1}{i(1 + i)^n}$</td>
</tr>
</tbody>
</table>
Interest formulas relating a uniform series to its present worth and future worth

We will use the relationship $F = P(1+i)^n$ in our uniform series derivation

The general relationship between R and F is shown in the figure given below

Where $R = \text{An end of period uniform series for n periods}$

$F = \text{Future sum or Future worth}$
Looking at the figure given below we see that if amount R is invested at end of each year for 4 years, the total amount F at the end of 4 years will be the sum of the compound amounts of the individual investments.

In general case for n years

$$F = R \left(1+i\right)^{n-1} + \ldots + R(1+i)^3 + R(1+i)^2 + R(1+i) + R \quad \text{......... (1)}$$

Where $R =$ An end of period uniform series for n periods

$F =$ Future sum or Future worth
Multiplying equation (1) by \((1+i)\), we have

\[(1+i)F = R(1+i)^n + \ldots + R(1+i)^4 + R(1+i)^3 + R(1+i)^2 + R(1+i) \ldots \ldots \ldots (2)\]

Factoring out \(R\) and subtracting equation (1) gives

\[(1+i)F = R \left[(1+i)^n + \ldots + (1+i)^4 + (1+i)^3 + (1+i)^2 + (1+i) \right] \ldots \ldots (3)\]

\[- \quad F = R \left[(1+i)^{n-1} + \ldots + (1+i)^3 + (1+i)^2 + (1+i) + 1 \right] \ldots \ldots (4)\]

\[iF = R \left[(1+i)^n - 1 \right]\]

Solving above equation \(iF = R[(1+i)^n - 1]\) for \(F\) gives

\[F = R \left[\frac{(1+i)^n - 1}{i} \right] \quad \ldots \ldots (5)\]
Thus we have an equation for F when R known i.e

$$F = R \left[\frac{(1 + i)^n - 1}{i} \right]$$

The term inside the brackets

$$\left[\frac{(1 + i)^n - 1}{i} \right]$$

is called uniform series compound amount factor
We know that
\[F = P(1 + i)^n \]
Substituting this equation for \(F \) in equation (5) we get

\[
F = R \left[\frac{(1+i)^n - 1}{i} \right] \quad - - - - (5)
\]

\[
P(1 + i)^n = R \left[\frac{(1+i)^n - 1}{i} \right]
\]

\[
P = R \left[\frac{(1+i)^n - 1}{i(1+i)^n} \right] \quad - - - - (6)
\]

Above equation (6) takes the form of **equation no. 4** of equations for economic studies given in the table (slide no. 6). The equation (6) can be used to calculate \(P \) if \(R \) is known. *(Nomenclature for the above equations are given in slide no. 8)*
Process Engineering Economics – Equations for economic studies

\[F = R \left(\frac{(1+i)^n - 1}{i} \right) \quad (5) \]

Above equation (5) takes the form of equation no. 3 of equations for economic studies given in the table (slide no. 5). The equation (5) can be used to calculate \(F \) if \(R \) is known. (Nomenclature for the above equations are given in slide no. 8)

We know that

\[P = R \left(\frac{(1+i)^n - 1}{i(1+i)^n} \right) \quad (6) \]

Rearranging the above equation (6), we have

\[\frac{P}{R} = \left(\frac{(1+i)^n - 1}{i(1+i)^n} \right) \]

\[R = P \left[\frac{i(1+i)^n}{(1+i)^n - 1} \right] \quad (7) \]
Above equation (7) takes the form of *equation no. 2* of equations for economic studies given in the table (slide no. 5). The equation (7) can be used to calculate R if P is known. *(Nomenclature for the above equations are given in slide no. 8)*
Above equation (7) or *equation no. 2* of equations for economic studies given in the table (slide no. 5) can be rearranged as follows.

\[
R = P \left[\frac{i(1+i)^n}{(1+i)^n - 1} \right] \quad ---- \text{(7)}
\]

\[
R[(1+i)^n - 1] = Pi(1+i)^n
\]

\[
[(1+i)^n - 1] = \frac{Pi}{R}[(1+i)^n]
\]

\[
\frac{[(1+i)^n - 1]}{(1+i)^n} = \frac{Pi}{R}
\]

\[
\frac{(1+i)^n}{(1+i)^n} - \frac{1}{(1+i)^n} = \frac{Pi}{R}
\]
Process Engineering Economics – Equations for economic studies

\[1 = \frac{P_i}{R} \]

\[1 = \frac{P_i}{R} + \frac{1}{(1 + i)^n} \]

\[1 - \frac{P_i}{R} = \frac{1}{(1 + i)^n} \]

\[1 - \frac{P_i}{R} = \frac{1}{(1 + i)^n} \]

\[\frac{1}{P_i} = (1 + i)^n \]

\[i.e. \ (1 + i)^n = \frac{1}{P_i} \]

\[----- (8) \]
(1 + i)^n = \frac{1}{Pi} \cdot \frac{1}{1 - \frac{Pi}{R}} \quad ----- (8)

Above equation (8) takes the form of *equation no. 6* of equations for economic studies given in the table (slide no. 6). The equation (8) can be used to calculate *rate of return* or *Payment time when L is zero* or *salvage/scrap value is neglected*. (*Nomenclature for the above equations are given in slide no. 8*)

Taking log on both sides of equation (8) we have

\[n \log(1 + i) = \log(1) - \log\left(1 - \frac{Pi}{R}\right) \]

\[n = \frac{-\log\left(1 - \frac{Pi}{R}\right)}{\log(1 + i)} \quad ----- (9) \]
Process Engineering Economics – Equations for economic studies

\[n \log(1 + i) = \log(1) - \log \left(1 - \frac{P_i}{R} \right) \]

\[n = \frac{-\log \left(1 - \frac{P_i}{R} \right)}{\log(1 + i)} \quad \text{(9)} \]

Above equation (8) takes the form of \textit{equation no. 6} of equations for economic studies given in the table (slide no. 6). The equation (8) can be used to calculate \textit{rate of return} or \textit{Payment time when L is zero} or \textit{salvage/scrap value} is neglected. \textbf{(Nomenclature for the above equations are given in slide no. 8)}
Process Engineering Economics – *References*